Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1
Сжигание и пиролиз твердых бытовых отходов

Опыт показывает, что для крупных городов с населением более 0,5 млн. жителей целесообразнее всего использовать термические методы обезвреживания ТБО.

Термические методы переработки и утилизации ТБО можно подразделить на три способа:



-слоевое сжигание исходных (неподготовленных) отходов в мусоросжигательных котлоагрегатах (МСК);

-слоевое или камерное сжигание специально подготовленных отходов (освобожденных от балластных фракций) в энергетических котлах совместно с природным топливом или в цементных печах;

-пиролиз отходов, прошедших предварительную подготовку или без нее.

Несмотря на разнородность состава твердых бытовых отходов, их можно рассматривать как низкосортное топливо (тонна отходов дает при сжигании 1.000—1.200 ккал тепла). Термическая переработка ТБО не только их обезвреживает, но и позволяет получать тепловую и электрическую энергию, а также извлекать имеющийся в них черный металлолом. При сжигании отходов процесс можно полностью автоматизировать, следовательно, и резко сократить обслуживающий персонал, сведя его обязанности до чисто управленческих функций. Это особенно важно, если учесть, что персоналу приходится иметь дело с таким антисанитарным материалом, как ТБО.



Слоевое сжигание ТБО в котлоагрегатах. При данном способе обезвреживания сжигаются все поступающие на завод отходы без какой-либо предварительной подготовки или обработки. Метод слоевого сжигания исходных отходов наиболее распространен и изучен. Однако при сжигании выделяется большое количество загрязняющих веществ, поэтому все современные мусоросжигательные заводы оборудованы высокоэффективными устройствами для улавливания твердых и газообразных загрязняющих веществ, стоимость их достигает 30% кап. затрат на строительство МСЗ.

Первая мусоросжигательная установка общей производительностью 9 т/ч введена в эксплуатацию в Москве в 1972 году. Она предназначалась для сжигания остатков после компостирования на мусороперерабатывающем заводе. Мусоросжигательный цех находился в одном здании с остальными цехами завода, который в связи с несовершенством технологического процесса и получаемого компоста, а также из-за отсутствия потребителя на этот продукт в 1985 году был закрыт.

Первый отечественный мусоросжигательный завод был построен в Москве (спецзавод №2). Режим работы завода — круглосуточный, без выходных дней. Тепло, получаемое от сжигания отходов, используется в городской системе теплоснабжения.

В 1973 году предприятие «ЧКД—Дукла» (ЧСФР) приобрело у фирмы «Дойче — Бабкок» (ФРГ) лицензию на изготовление МСК с валковой колосниковой решеткой. По внешнеторговым связям котлы, выпускаемые этим предприятием, приобретены для ряда городов нашей страны.

В 1984 году введен в эксплуатацию в Москве самый крупный отечественный мусоросжигательный спец. завод № 3. Производительность каждого из четырех его агрегатов составляет 12,5т сжигаемых отходов в час. Отличительная особенность агрегата — дожигательный барабан, установленный за каскадом наклоннопереталкивающих колосниковых решеток.

Опыт эксплуатации отечественных заводов позволил выявить ряд недостатков, влияющих на надежность работы основного технологического оборудования и на состояние окружающей среды. Для устранения обнаруженных недостатков необходимо:

-обеспечить раздельный сбор золы и шлака;

-предусмотреть установку резервных транспортеров для удаления золошлаковых отходов;

-повысить степень извлечения лома черных металлов из шлака;

-обеспечить очистку извлеченного металлолома от золошлаковых загрязнений;

-предусмотреть дополнительное оборудование для пакетирования извлеченного лома черных металлов;

-разработать, изготовить и установить технологическую линию по подготовке шлака для вторичного использования;

-установить дробилку для крупногабаритных отходов.

Удешевление сжигания ТБО.

Снижение затрат на транспортировку отходов диктуют необходимость строительства двух мусоросжигательных заводов производительностью по 200 тыс.т отходов в год. Это наиболее рациональный вариант.

Следует рассмотреть возможность создания безотходного производства с использованием шлака и золы для дорожного строительства и стройиндустрии, обеспечив при этом извлечение остатков черного и цветного металлолома. Необходимо также предусмотреть в схеме завода двухступенчатую систему очистки выбросов, отвечающую самым жестким нормативам и требованиям. Аппараты очистки от летучей золы должны иметь эффективность не ниже 99%. Химическая очистка от газообразных загрязняющих веществ должна улавливать такие выбросы, как S02, NO2, HCI и HF. Конструкция котлоагрегата должна обеспечивать полное дожигание органических и полиароматических веществ, образующихся в процессе горения отходов.

Проблема полного уничтожения или частичной утилизации твердых бытовых отходов (ТБО) — бытового мусора — актуальна, прежде всего, с точки зрения отрицательного воздействия на окружающую среду. Твердые бытовые отходы - это богатый источник вторичных ресурсов (в том числе черных, цветных, редких и рассеянных металлов), а также — "бесплатный" энергоноситель, так как бытовой мусор - возобновляемое углеродсодержащее энергетическое сырье для топливной энергетики.

Однако для любого города и населенного пункта проблема удаления или обезвреживания твердых бытовых отходов всегда является в первую очередь проблемой экологической. Весьма важно, чтобы процессы утилизации бытовых отходов не нарушали экологическую безопасность города, нормальное функционирование городского хозяйства с точки зрения общественной санитарии и гигиены, а также условия жизни населения в целом.

Как известно, подавляющая масса ТБО в мире пока складируется на мусорных свалках, стихийных или специально организованных в виде "мусорных полигонов". Однако это самый неэффективный способ борьбы с ТБО, так как мусорные свалки, занимающие огромные территории часто плодородных земель и характеризующиеся высокой концентрацией углеродсодержащих материалов (бумага, полиэтилен, пластик, дерево, резина), часто горят, загрязняя окружающую среду отходящими газами. Кроме того, мусорные свалки являются источником загрязнения как поверхностных, так и подземных вод за счет дренажа свалок атмосферными осадками.

Например, в Москве ежегодно образуется 10 млн. т промышленных и бытовых отходов, которые вывозятся на специализированные свалки. Таких свалок в Подмосковье свыше 50, каждая площадью от 3 до 10 га. В целом в России под мусорные свалки отчуждено 0,8 млн. га земель, среди которых не только пустыри, овраги и карьеры, но и плодородные черноземы.

Зарубежный опыт показывает, что рациональная организация переработки ТБО дает возможность использовать до 90% продуктов утилизации в строительной индустрии, например в качестве заполнителя бетона. По данным специализированных фирм, осуществляющих в настоящее время даже малоперспективные технологии прямого сжигания твердых бытовых отходов, реализация термических методов при сжигании 1000 кг ТБО позволит получить тепловую энергию, эквивалентную сжиганию 250 кг мазута. Однако реальная экономия будет еще больше, поскольку не учитывают сам факт сохранения первичного сырья и затраты на добычу его, т. е. нефти и получения из нее мазута.

Кроме того, в развитых странах существует законодательное ограничение на содержание в 1 м3 выбрасываемого в атмосферу дымового газа не более 0,1х10-9 г двуокиси азота и фуранов при сжигании отходов. Эти ограничения диктуют необходимость поисков технологических путей обеззараживания ТБО с наименьшим отрицательным влиянием на окружающую среду, особенно мусорных свалок.

Следовательно, депонирование бытового мусора в открытых свалках крайне отрицательно влияет на окружающую среду и как следствие — на человека. В настоящее время существует ряд способов хранения и переработки твердых бытовых отходов, а именно:



  1. предварительная сортировка;

  2. санитарная земляная засыпка;

  3. сжигание;

  4. биотермическое компостирование;

  5. низкотемпературный пиролиз;

  6. высокотемпературный пиролиз.

Предварительная сортировка. Этот технологический процесс предусматривает разделение твердых бытовых отходов на фракции на мусороперерабатывающих заводах вручную или с помощью автоматизированных конвейеров. Сюда входит процесс уменьшения размеров мусорных компонентов путем их измельчения и просеивания, а также извлечение более или менее крупных металлических предметов, например консервных банок. Отбор их как наиболее ценного вторичного сырья предшествует дальнейшей утилизации ТБО (например, сжиганию). Поскольку сортировка ТБО — одна из составных частей утилизации мусора, то имеются специальные заводы для решения этой задачи, т. е. выделения из мусора фракций различных веществ: металлов, пластмасс, стекла, костей, бумаги и других материалов с целью дальнейшей их раздельной переработки.

Санитарная земляная засыпка. Такой технологический подход к обезвреживанию твердых бытовых отходов связан с получением биогаза и последующим использованием его в качестве топлива. С этой целью бытовой мусор засыпают по определенной технологии слоем грунта толщиной 0,6-0,8 м в уплотненном виде. Биогазовые полигоны снабжены вентиляционными трубами, газодувками и емкостями для сбора биогаза.

Наличие в толщах мусора на свалках пористости и органических компонентов создаст предпосылки для активного развития микробиологических процессов. Толщу свалки условно можно разделить на несколько зон (аэробную, переходную и анаэробную), различающихся характером микробиологических процессов. В самом верхнем слое, аэробном (до 1—1,5 м), бытовой мусор благодаря микробному окислению постепенно минерализуется до двуокиси углерода, воды, нитратов, сульфатов и ряда других простых соединений. В переходной зоне происходит восстановление нитратов и нитритов до газообразного азота и его оксидов, т. е. процесс денитрификации. Наибольший объем занимает нижняя анаэробная зона, в которой интенсивные микробиологические процессы протекают при малом (ниже 2%) содержании кислорода. В этих условиях образуются самые различные газы и летучие органические вещества. Однако центральным процессом этой зоны является образование метана. Постоянно поддерживающая здесь температура (30-40° С) становится оптимальной для развития метанообразующих бактерий.

Таким образом, свалки представляют собой наиболее крупные системы по производству биогаза из всех современных. Например, 1 га свалки в Подмосковье выделяет такое количество метана, как (2…4)х103 га дерново-подзолистой почвы.

Учитывая, что 1 т бытовых отходов выделяет не менее 100 м3 биогаза, можно определить потенциальные возможности свалок как энергетического источника. Использование биогаза возможно как минимум через 5-10 лет после создания свалки, а его рентабельность проявляется при объемах мусора более 1 млн. т.

В процессе сжигания биогаза происходит разрушение содержащихся в свалочных газах токсичных компонентов, обеспечивающее безопасные для окружающей среды выбросы.

Надо отметить, что грунтовые и поверхностные воды, протекающие через земляную засыпку, захватывают растворенные и суспензированные твердые вещества и продукты биологического разложения, поэтому растворы выщелачивания ТБО представлены богатой по вещественному составу ассоциацией химических элементов и соединений. Например, для них характерна величина (мг/л рН=6,0-6,5) и присутствуют карбонат: жесткий раствор (890 - 7600), щелочной раствор (730-9500); Ca (240-2330); Mg (64-410), Na (85-1700); K (28-1700); Fe (0,5-8,7); хлориды (96-2350); сульфаты (84-730); фосфаты (0,3 29); N: органического происхождения (2,4-465), аммонийного происхождения (0,22-480).

Можно предположить, что и в перспективе роль мусорных свалок заметно не уменьшится, поэтому извлечение биогаза из них с целью его полезного использования будет оставаться актуальным. Однако возможно и существенное сокращение мусорных свалок за счет максимально возможного вторичного использования бытовых отходов путем селективного сбора составляющих его компонентов - макулатуры, стекла, металлов и т. д.

Сжигание - это широко распространенный способ уничтожения твердых бытовых отходов, который широко применяется с конца XIX в.

Сложность непосредственной утилизации ТБО обусловлена, с одной стороны, их исключительной многокомпонентностью, с другой — повышенными санитарными требованиями к процессу их переработки. В связи с этим сжигание до сих пор остается наиболее распространенным способом первичной обработки бытовых отходов.

Сжигание бытового мусора, помимо снижения объема и массы, позволяет получать дополнительные энергетические ресурсы, которые могут быть использованы для централизованного отопления и производства электроэнергии. К числу недостатков этого способа относится выделение в атмосферу вредных веществ, а также уничтожение ценных органических и других компонентов, содержащихся в составе бытового мусора.

При сжигании ТБО получают 28-44% золы от сухой массы и газообразные продукты в виде двуокиси углерода, паров воды, различных примесей. Запыленность отходящих газов составляет 5—10 г/нм3 (25— 50 кг/т ТБО). Так как процесс горения отходов происходит при температуре 800-900°С, то в отходящих газах присутствуют органическое соединения — альдегиды, фенолы, хлорорганические соединения (диоксин, фуран), а также соединения тяжелых металлов.

Теплотворная способность бытовых отходов примерно соответствует бурому углю. В среднем теплотворная способность бытовых отходов колеблется от 1000 до 3000 ккал/кг. Выявлено также, что по теплотворной способности 10,5 г твердых бытовых отходов эквивалентны 1т нефти; по калорийности бытовые отходы уступают каменному углю всего в 2 раза; примерно 5т мусора выделяет при сгорании столько же тепла, сколько 2 т угля или 1 т жидкого топлива.

Сжигание можно разделить на два вида:


  • непосредственное сжигание, при котором получается только тепло и энергия;

  • пиролиз, при котором образуется жидкое и газообразное топливо.

В настоящее время уровень сжигания бытовых отходов в отдельных странах различен. Из общих объемов бытового мусора доля сжигания колеблется в таких странах, как Австрия, Италия, Франция, Германия, от 20 до 40%; Бельгия, Швеция — 48-50%; Япония — 70%; Дания, Швейцария - 80%; Англия и США — 10%. В нашей стране сжиганию подвергаются пока лишь около 2% бытового мусора, а в Москве — около 10%.

Для повышения экологической безопасности необходимым условием при сжигании мусора является соблюдение ряда принципов. К основным из них относятся температура сжигания, которая зависит от вида сжигаемых веществ; продолжительность высокотемпературного сжигания, зависящая также от вида сжигаемых отходов; создание турбулентных воздушных потоков для полноты сжигания отходов.

Различие отходов по источникам образования и физико-химическим свойствам предопределяет многообразие технических средств и оборудования для сжигания.

В последние годы ведутся исследования по совершенствованию процессов сжигания, что связано с изменением состава бытовых отходов, ужесточением экологических норм. К модернизированным способам сжигания отходов можно отнести замену воздуха, подаваемого к месту сжигания отходов для ускорения процесса, на кислород. Это позволяет снизить объем горючих отходов, изменить их состав, получить стеклообразный шлак и полностью исключить фильтрационную пыль, подлежащую подземному складированию. Сюда же относится и способ сжигания мусора в псевдоожиженном слое. При этом достигается высокая полнота сгорания при минимуме вредных веществ.



По зарубежным данным, сжигание мусора целесообразно применять в городах с населением не менее 15 тыс. жителей при производительности печи около 100 т/сут. Из каждой тонны отходов можно выработать около 300-400 кВт-ч электроэнергии.

В настоящее время топливо из бытовых отходов получают в измельченном состоянии в виде гранул и брикетов. Предпочтение отдается гранулированному топливу, так как сжигание измельченного топлива сопровождается большим пылевыносом, а использование брикетов создает трудности при загрузке в печь и поддержании устойчивого горения. Кроме того, при сжигании гранулированного топлива намного выше КПД котла.



Мусоросжигание обеспечивает минимальное содержание в шлаке и золе разложимых веществ, однако оно является источником выбросов в атмосферу. Мусоросжигательными заводами (МСЗ) выбрасываются в газообразном виде хлористый и фтористый водород, сернистый газ, диоксин, а также твердые частицы различных металлов: свинца, цинка, железа, марганца, сурьмы, кобальта, меди, никеля, серебра, кадмия, хрома, олова, ртути и др.

Установлено, что содержание кадмия, свинца, цинка и олова в копоти и пыли, выделяющихся при сжигании твердых горючих отходов изменяется пропорционально содержанию в мусоре пластмассовых отходов. Выбросы ртути обусловлены присутствием в отходах термометров, сухих гальванических элементов и люминесцентных ламп. Наибольшее количество кадмия содержится в синтетических материалах, а также в стекле, коже, резине. Исследованиями США выявлено, что при прямом сжигании твердых бытовых отходов большая часть сурьмы, кобальта, ртути, никеля и некоторых других металлов поступает в отходящие газы из негорючих компонентов, т. е. удаление негорючей фракции из бытовых отходов понижает концентрацию в атмосфере этих металлов. Источниками загрязнения атмосферы кадмием, хромом, свинцом, марганцем, оловом, цинком являются в равной степени как горючая, так и негорючая фракции твердых бытовых отходов. Существенное уменьшение загрязнения атмосферного воздуха кадмием и медью возможно за счет отделения из горючей фракции полимерных материалов.

Таким образом, можно констатировать, что главным направлением в сокращении выделения вредных веществ в окружающую среду является сортировка или раздельный сбор бытовых отходов.

В последнее время все более распространяется метод совместного сжигания твердых бытовых отходов и шламов сточных вод. Этим достигается отсутствие неприятного запаха, использование тепла от сжигания отходов для сушки осадков сточных вод.

Надо отметить, что технология ТБО развивалась в период, когда не были еще ужесточены нормы выброса газовой составляющей. Однако сейчас стоимость газоочистки на мусоросжигательных заводах резко возросла. Все мусоросжигательные предприятия являются убыточными. В этой связи разрабатываются такие способы переработки бытовых отходов, которые позволили бы утилизировать и вторично использовать ценные компоненты, содержащиеся в них.

Биотермическое компостирование. Этот способ утилизации твердых бытовых отходов основан на естественных, но ускоренных реакциях трансформации мусора при доступе кислорода в виде горячего воздуха при температуре порядка 60°С. Биомасса ТБО в результате данных реакций в биотермической установке (барабане) превращается в компост. Однако для реализации этой технологической схемы исходный мусор должен быть очищен от крупногабаритных предметов, а также металлов, стекла, керамики, пластмассы, резины. Полученная фракция мусора загружается в биотермические барабаны, где выдерживается в течение 2 суток с целью получения товарного продукта. После этого компостируемый мусор вновь очищается от черных и цветных металлов, доизмельчается и затем складируется для дальнейшего использования в качестве компоста в сельском хозяйстве или биотоплива в топливной энергетике.

Биотермическое компостирование обычно проводится на заводах по механической переработке бытовых отходов и является составной частью технологической цепи этих заводов.

Однако современные технологии компостирования не дают возможности освободиться от солей тяжелых металлов, поэтому компост из ТБО фактически малопригоден для использования в сельском хозяйстве. Кроме того, большинство таких заводов убыточны. Поэтому предпринимаются разработки концепций получения синтетического газообразного и жидкого топлива для автотранспорта из продуктов компостирования, выделенных на мусороперерабатывающих заводах. Например, предполагается реализовать получаемый компост в качестве полуфабриката для дальнейшей его переработки в газ.

Способ утилизации бытовых отходов пиролизом известен достаточно мало, особенно в нашей стране из-за своей дороговизны. Он может стать дешевым и не отравляющим окружающую среду приемом обеззараживания отходов. Технология пиролиза заключается в необратимом химическом изменении мусора под действием температуры без доступа кислорода. По степени температурного воздействия на вещество мусора пиролиз как процесс условно разделяется на низкотемпературный (до 900°С) и высокотемпературный пиролиз (свыше 900° С).



Низкотемпературный пиролиз - это процесс, при котором размельченный материал мусора подвергается термическому разложению. При этом процесс пиролиза бытовых отходов имеет несколько вариантов:

  • пиролиз органической части отходов под действием температуры в отсутствии воздуха;

  • пиролиз в присутствии воздуха, обеспечивающего неполное сгорание отходов при температуре 760°С;

  • пиролиз с использованием кислорода вместо воздуха для получения более высокой теплоты сгорания газа;

  • пиролиз без разделения отходов на органическую и неорганическую фракции при температуре 850°С и др.

Повышение температуры приводит к увеличению выхода газа и уменьшению выхода жидких и твердых продуктов.

Преимущество пиролиза по сравнению с непосредственным сжиганием отходов заключается прежде всего в его эффективности с точки зрения предотвращения загрязнения окружающей среды. С помощью пиролиза можно перерабатывать составляющие отходов, трудно поддающиеся утилизации, такие, как автопокрышки, пластмасса, отработанные масла, отстойные вещества. После пиролиза не остается биологически активных веществ, поэтому подземное складирование пиролизных отходов не наносит вреда природной среде. Образующийся пепел имеет высокую плотность, что резко уменьшает объем отходов, подвергающийся подземному складированию. При пиролизе не происходит восстановления (выплавки) тяжелых металлов. К преимуществам пиролиза относятся и легкость хранения и транспортировки получаемых продуктов, а также то, что оборудование имеет небольшую мощность. В целом процесс требует меньших капитальных вложений.

Установки или заводы по переработке твердых бытовых отходов способом пиролиза функционируют в Дании, США, ФРГ, Японии и других странах.



Активизация научных исследований и практических разработок в этой области началась в 70-х годах ХХ столетия, в период "нефтяного бума". С этого времени получение из пластмассовых, резиновых и прочих горючих отходов энергии и тепла путем пиролиза стало рассматриваться как один из источников выработки энергетических ресурсов. Особенно большое значение придают этому процессу в Японии.

Высокотемпературный пиролиз. Этот способ утилизации ТБО, по существу, есть не что иное, как газификация мусора. Технологическая схема этого способа предполагает получение из биологической составляющей (биомассы) отходов вторичного синтез-газа с целью использования его для получения пара, горячей воды, электроэнергии. Составной частью процесса высокотемпературного пиролиза являются твердые продукты в виде шлака, т. е. непиролизуемые остатки. Технологическая цепь этого способа утилизации состоит из четырех последовательных этапов:

  1. отбор из мусора крупногабаритных предметов, цветных и черных металлов с помощью электромагнита и путем индукционного сепарирования;

  2. переработка подготовленных отходов в газофикаторе для получения синтез-газа и побочных химических соединений — хлора, азота, фтора, а также шлака при расплавлении металлов, стекла, керамики;

  3. очистка синтез-газа с целью повышения его экологических свойств и энергоемкости, охлаждение и поступление его в скруббер для очистки щелочным раствором от загрязняющих веществ соединений хлора, фтора, серы, цианидов;

  4. сжигание очищенного синтез-газа в котлах-утилизаторах для получения пара, горячей воды или электроэнергии.

При переработке, например, древесной стружки синтез-газ содержит (в %): влагу — 33,0; окись углерода — 24,2; водород - 19,0; метан — 3,0; двуокись углерода —10,3; азот — 43,4, а также 35-45 г/нм дегтя.

Из 1т твердых отходов, состоящих из 73% ТБО, 7% резиновых отходов (в основном автомобильные шины) и 20% каменного угля получают 40 кг смолы, используемой в котельной и 1500-2000 м3 влажного газа. Объемная доля компонентов сухого газа следующая (в %): водород — 20, метан — 2, окись углерода — 20, двуокись углерода — 8, кислород — 1, азот - 50. Низшая теплота сгорания 5,4-6,3 МДж/м3. Шлака получается 200 кг/т.

Сжигание и пиролиз твердых бытовых отходов

Опыт показывает, что для крупных городов с населением более 0,5 млн жителей целесообразнее всего использовать термические методы обезвреживания тбо

161.09kb.

26 09 2014
1 стр.


Информация о размещении твердых бытовых отходов и отходов

Тульской области осуществляется на 19 полигонах тбо, зарегистрированных в Государственном реестре объектов размещения отходов и имеющие действующие лицензии на осуществление деятел

80.21kb.

28 09 2014
1 стр.


Графики сбора и вывоза твердых бытовых отходов с территории славянского городского поселения
120.92kb.

29 09 2014
1 стр.


Санитарно-гигиенический мониторинг полигонов захоронения твердых бытовых отходов (тбо) на этапах жизненного цикла
672.57kb.

25 12 2014
3 стр.


Рекламно-техническое описание

Научно-исследовательский проект по гарбологии «Современные проблемы утилизации твёрдых бытовых отходов»

77.46kb.

09 10 2014
1 стр.


введение сущность и направления охраны окружающей природной среды

Технологический регламент получение биогаза с полигонов твердых бытовых отходов

442.2kb.

06 10 2014
2 стр.


А. В. Согин, И. А. Согин, 2012

Опыт намыва грунта для ликвидации возгораний полигона твердых бытовых отходов

62.69kb.

28 09 2014
1 стр.


Закона от 06. 10. 2003г. №131-фз «Об общих принципах организации местного самоуправления в рф»

О проведении общественных слушаний по проведению рекультивации Карабашской городской свалки твердых бытовых отходов, расположенной у р. Сак-Элга вблизи автодороги Карабаш – Миасс

13.67kb.

08 10 2014
1 стр.