Перейти на главную страницу
Возможная выработка энергии уменьшается из-за глобального затемнения — уменьшения потока солнечного излучения, доходящего до поверхности Земли.
При производстве фотоэлементов уровень загрязнений не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы 30—50 лет. Применение кадмия, связанного в соединениях, при производстве некоторых типов фотоэлементов с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение, и соединениям кадмия при современном производстве уже найдена достойная замена.
В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния, по отношению к массе подложки, на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности CIS и CIGS, достойных конкурентов кремнию. Так, например, в 2005 году компания «Shell» приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов.
Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.
В настоящее время принято различать три поколения ФЭП:
За период с 1999 года по 2006 год поставки тонкоплёночных фотоэлементов росли ежегодно в среднем на 80 %.
В 1985 году все установленные мощности мира составляли 21 МВт.
Крупнейшие производители фотоэлементов в 2009 году:
В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии.
В 2010 году 2 % электроэнергии Германии было получено из фотоэлектрических установок.
В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок.
В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово, в результате чего его суммарная установленная мощность возросла до 100 МВт . Солнечный парк Перово в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков другой проект на Украине - 80-мегаваттная электростанция Охотниково в Сакском районе Крыма.
Первая в России солнечная электростанция мощностью 100 кВт была запущена в сентябре 2010 года в Белгородской области.
В середине 2011 года в фотоэлектрической промышленности Германии было занято более 100 тысяч человек. В солнечной энергетике США работали 93,5 тысяч человек.
Сгенерированная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно. Однако, эксперты указанного агентства не учитывают либо сознательно замалчивают тот факт, что через 40 лет ожидается общемировой энергетический кризис, связанный с исчерпанием невозобновляемых источников энергии, главным образом нефти. На этом фоне перспективы солнечной энергетики не столь радужны. Это связано с тем, что вся промышленность, в т.ч. и электронная, выпускающая солнечные элементы не является самодостаточной и не может существовать без углеводородного топлива и сырья. Иными словами выброс углекислоты неизбежно сократится через 40 лет, но отнюдь не благодаря достижениям передовых технологий. Солнечная энергия действительно сможет обеспечить четверть потребностей человечества, но лишь в результате неизбежной грядущей мировой депопуляции. При этом потребность будет покрыта лишь на ближайшие 30 лет, до выхода из строя всех солнечных энергоустановок, после чего заменить их будет нечем.
Процент обеспечения потребностей человечества к 2050 году электроэнергией, полученной на СЭС - это вопрос стоимости 1 кВтч при установке солнечной электростанции "под ключ" и развитости мировой энергетической системы, а также сравнительной привлекательности других способов получения электроэнергии. Гипотетически это может быть от 1% до 80%. Одна из цифр в этом диапазоне точно будет соответствовать истине.
Когда углеводородное сырье станет действительно дорогим, его уже не будут массово использовать как топливо, поэтому нефти как сырья для химической промышленности хватит на срок, значительно превышающий 40 лет.
Энергоокупаемость солнечной электростанции значительно меньше 30 лет (особенно, если установить ее в пустыне Сахара). Так, для США, при средней мощности солнечного излучения в 1700 кВт·ч на кв.м в год, энергоокупаемость поликристаллического кремниевого модуля с КПД 12% составляет менее 4 лет (данные на январь 2011).
Поэтому энергетическое самообеспечение при производстве солнечных электростанций лишь дело доброй воли (необходимости) и технологии, а не нечто невозможное.
Если перефразировать известную шутку, то через 40 лет очередной президент США с удивлением обнаружит в Сахаре повышенное солнечное излучение и полное отсутствие демократии у ящериц.
Стоимость энергии, полученной из солнечной батареи, ежегодно снижается. Так, за 2011 год она уменьшилась на 50%, с 2008 года падение цены составило 75%. За 2011 год стоимость 1 ватта солнечной электроэнергии впервые упала ниже 1 доллара.
С помощью солнечного света можно освещать помещения в дневное время суток. Для этого применяются световые колодцы. Простейший вариант светового колодца — отверстие в потолке.
Световые колодцы применяются для освещения помещений, не имеющих окон: подземные гаражи, станции метро, промышленные здания, склады, тюрьмы, и т. д.
Солнечная термальная энергетика
Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т. д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.
В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09-$0,12 за кВт·ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04-$0,05 к 2015—2020 г.
В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа.
На начало 2010 года общая мировая мощность солнечной термальной энергетики (концентраторных солнечных станций) достигла одного гигаватта .
Солнечная кухня
Солнечные коллекторы могут применяться для приготовления пищи. Температура в фокусе коллектора достигает 150 °С. Такие кухонные приборы могут широко применяться в развивающихся странах. Стоимость материалов необходимых для производства «солнечной кухни» составляет $3 — $7. В развивающихся странах для приготовления пищи активно используются дрова.
Традиционные очаги для приготовления пищи имеют термическую эффективность около 10 %. Использование дров для приготовления пищи приводит к массированной вырубке лесов. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн тонн СО2. В Уганде среднее домохозяйство ежемесячно потребляет 440 кг дров.
Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары,Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин.
Существуют различные международные программы распространения солнечных кухонь. Например, в 2008 г. Финляндия иКитай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО2 на 1,7 млн тонн в 2008—2012 гг. В будущем Финляндия сможет продавать квоты на эти выбросы.
Использование солнечной энергии в химическом производстве
Солнечная энергия может применяться в различных химических процессах. Например:
Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства, или для электродвигателя электрического транспорта.
В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.
Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius. Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10 %.
Солнечная энергетика используетнеисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных элек
14 12 2014
1 стр.
Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных эле
14 12 2014
1 стр.
14 12 2014
1 стр.
Нельзя утверждать, что широкомасштабное использование солнечной энергии не будет иметь никаких последствий для окружающей среды, но все же они будут несравненно меньшими, чем в тра
15 10 2014
1 стр.
Охватывает возможные направления по применению виэ, включая и такие аспекты, как выявление этих источников и их защита, устанволение стабильной ценовой политики в энергетическом се
23 09 2014
3 стр.
Энергетика важнейшая отрасль народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Это основа эконо
12 09 2014
1 стр.
Централизованное теплоснабжение осуществляется в районах многоэтажной застройки, а также в местах расположения промышленных потребителей тепловой энергии. Индивидуальные источники
16 12 2014
13 стр.
Оценка текущего положения на рынке (доля малой энергетики в балансе энергии и мощности страны, соотношение стоимости 1 кВтч, 1 Гкал энергии, 1 кВт установленной мощности объектов т
08 10 2014
1 стр.