




















Геометрическая оптика
В геометрической оптике чаще рассматриваются точечные источники света, т.е. источники, размерами которых можно пренебречь. Направление световой волны изображается в виде светового луча.
В геометрической оптике рассматривается три закона распространения света:
-
В однородной среде свет распространяется прямолинейно. Доказательством этого закона служат примеры образования тени и полутени, а также солнечное и лунное затмения.
-
Закон отражения света: Луч падающий, луч отраженный и перпендикуляр, проведенный в точке падения луча к отражающей поверхности, лежат в одной плоскости. Угол падения равен углу отражения.
α β
В плоском зеркале получается изображение: мнимое, равное, прямое и удаленное на такое же расстояние от зеркала, как и предмет.
А А1
B B1
-
Закон преломления света: Луч падающий, луч преломленный и перпендикуляр, проведенный в точке падения луча к границе двух сред, лежат в одной плоскости.
n1, n2 – абсолютные показатели каждой среды. Абсолютный показатель среды показывает, во сколько раз скорость света в вакууме больше скорости света в данной среде, т.е.
Тогда закон преломления света можно записать в виде:
Таким образом, если свет переходит из оптически менее плотной среды в оптически более плотную среду, то угол падения α больше угла преломления γ; при переходе из оптически более плотной среды в оптически менее плотную угол падения α меньше угла преломления γ.
При переходе из оптически более плотной среды в оптически менее плотную среду при некотором угле падения, называемом предельным α0, световой луч пойдет по границе двух сред, т.е. γ = 0. И тогда:
α0
Для углов, больших, чем предельный угол, будет наблюдаться полное внутреннее отражение.
α β
На явлении преломления света основано применение линз.
Линзы – это прозрачные тела, ограниченные сферическими поверхностями. Различают собирающие и рассеивающие линзы. Их название определяется ходом преломленных лучей при падении на линзу пучка параллельных лучей света:
- собирающие:
- рассеивающие:
Главная оптическая ось линзы – это прямая, проходящая через центры сфер, образующих линзу.
Оптический центр линзы (точка О) – точка, находящаяся на пересечении главной оптической оси и оси линзы. Лучи, проходящие через оптический центр линзы, не преломляются, т.к. падают на линзу под углом 0°.
Если направить на линзу лучи, параллельные главной оптической оси, то преломленные лучи пересекутся в точке, которая называется фокусом линзы F (у рассеивающей линзы фокус получается на пересечении продолжения преломленных лучей). Расстояние между оптическим центром линзы и фокусом называется фокусным расстоянием F. Соответственно, у собирающей линзы фокусное расстояние положительное (фокус действительный), у рассеивающей – отрицательное (фокус мнимый).
Если направить на линзу параллельные лучи, то после преломления они пройдут через точку, лежащую в фокальной плоскости – прямую, проходящую через фокус линзы перпендикулярно главной оптической оси:
Линзы отличаются друг от друга увеличивающей способностью, называемой оптической силой линзы:
Оптическая сила линзы измеряется в диоптирях (дптр).
Для построения изображения в линзах используют следующие лучи:
-
Лучи, параллельные главной оптической оси, после преломления проходят через фокус линзы.
-
Лучи, проходящие через оптический центр, не преломляются.
-
Лучи, проходящие через фокус, после преломления будут параллельны главной оптической оси.
Изображения, даваемые собирающей линзой:
-
Если d > 2F
-
Если F < d < 2F
-
Если d = F
-
Если 0 < d < F
Изображение, даваемое рассеивающей линзой:
Построение изображения точки, лежащей на главной оптической оси:
Формула тонкой линзы:
где d – расстояние от предмета до линзы,
f – расстояние от линзы до изображения.
«+» ставится, если линза собирающая и изображение действительное,
« - « ставится, если линза рассеивающая и изображение мнимое.
Увеличение, которая дает линза – это отношение длины изображения к длине предмета: