Перейти на главную страницу
Документ MathCad состоит из областей различного типа. Текстовые области создаются нажатием кнопки с буквой А на панели инструментов. Математические области возникают, если щелкнуть мышью на свободном месте рабочего окна (появляется красный крестик - визир, фиксирующий место ввода формулы).
Имена переменных чувствительны к регистру. Синий уголок показывает текущий операнд выражения, он может быть расширен клавишей “Пробел”. Обратите внимание, что в качестве разделителя целой и дробной части числа используется точка.
:= это оператор присваивания.
= это команда “Вывести значение”.
Если Вы хотите изменить количество знаков результата вычислений после десятичной точки, это можно сделать в меню Format\Number…\Displayed Precision(3) или просто дважды щёлкнуть мышкой по выражению, после чего, заменить 3 на 6. Установим, например, для значения выражения 6 значащих цифр:
Для ввода текстового комментария необходимо ввести знак двойной кавычки “”, затем вводить текст. При достижении конца строки происходит автоматический переход на следующую. Текстовая область, как и любая другая, может быть перемещена на рабочем листе или скопирована в буфер. Маркеры текстовой области позволяют менять её размеры.
Функции. Интервальная переменная.
Введём для примера алгебраическую функцию:
a:=1 b:=1 c:=-1
Нам пришлось предварительно описать три константы a,b,c, иначе функция не может быть вычислена.
Теперь, для того чтобы получить значение функции, достаточно записать:
f (1.5) =2.75
Введём понятие интервальной переменной в формате:
В скобках указан необязательный параметр шаг, по умолчанию равный 1.
Введём для примера интервал изменения аргумента x на отрезке [-2;2] с шагом h=0.1
x:=-2,-2+0.1..2
Фактически мы получаем набор из 41 значения аргумента. Чтобы убедиться в этом достаточно ввести x=.
Для того, чтобы вывести таблицу значений функции, введите f(x) и знак “=”. Вы получите значения функции.
Таким образом можно увидеть только первые
50 значений.
Ну, а сейчас можно построить график. Воспользуемся графической палитрой, раскрыв которую выберем х-у график.
График строится довольно просто, нужно только указать переменную х в маркере оcи x и функцию f(x)
в маркере оси у. Заканчивается построение клавишей Enter или щелчком мыши вне графика.
Можно также явно указать начальное и
конечное значение по осям в маркерах начала и конца оси, иначе они определяются автоматически. Выделив график двойным щелчком мыши, можно произвести настройку, в частности, определить тип, цвет и толщину линии, а также выбрать оси.
Есть еще две интересные опции графической палитры:
Zoom - позволяет выделить часть графика,
Trace - отслеживает изменение координат на графике.
Числовые массивы. Матрицы
В Mathcad реализованы одно- и двумерные матрицы, причём одномерные матрицы - это просто массивы, у которых один столбец. Создаются матрицы при помощи кнопки палитры инструментов или команды Insert\Мatrix..., где указывается количество строк, столбцов Rows и Columns. Для примера создадим матрицу размером 3*3 и 3*1:
A= 8 9 4 B= 2
7 6 5 3
1. Умножение матрицы на число:
2 4 6
14 12 10 2 *0.5 = 1
3 1,5
2. Сложение матриц:
1 0,5 1,5 3 6 9
2 + 1 = 3 C = A + 2∙A C = 24 27 12
3 1,5 4,5 21 18 15
Доступ к элементам матрицы
В однoмернoй матрице (вектор-столбец) все значения пронумерованы от 0 до n-1, где n - количество значений. Обращение к элементу массива производится по индексу. Например, в матрице В три значения с индексами 0,1,2 и обращение к ним производится как к переменной с индексом:
B0=1 B1=2 B2=3 Индекс вводится символом квадратной скобки [-В[0, В[1, В[2 или из арифметической палитры.
Примечание. Переменная с индексом может присутствовать в арифметическом выражении наряду с другими переменными.
Обращение к двумерному массиву производится аналогично, только приходится указывать два индекса через запятую: первый индекс - это номер строки, второй – номер столбца. Как и ранее нумерация начинается с 0. Например:
A0,0=1 A0,2=3 A2,0=7 A2,2=5
Матрицы и переменные с индексом.
Если вернуться к задаче из предыдущего занятия, можно решить ее следующим образом:
введем индекс как интервальную переменную i=0…40
введем переменную с индексом, который будет меняться от -2 до 2 с шагом 0,1, для описания переменной наберем выражение: xi=-2+0,1*i
Если вычислить уi =f(xi), мы получим вектор-столбец значений функции.
Введите х= и у= , получите эти матрицы.
При помощи переменной с индексом мы создали две одномерные матрицы с одним столбцом и 41 строкой. Теперь можно вновь построить график, где в качестве функции и аргумента мы и укажем эти переменные с индексом xi и уi:
Примечание: на одном Х – У графике модно построить до 16 кривых. Функции вводятся через запятую.
Аналогично можно использовать двумерную матрицу для построения графика функции двух переменных, например, определим функцию и две интервальных переменных: i=0…10 j=0…10 f(x,y)=x2-y2
Теперь определяем две переменные с индексом: xi=-5+i yj=-5+j
Mi,j=f(xi, yj)
Определим двумерную матрицу и построим поверхность. В качестве единственного аргумента графика указываем имя матрицы М.
Для того, чтобы поверхность так выглядела, необходимо ее настроить. Двойным щелчком мыши вызываем меню настройки, устанавливаем опции света, поворот 50 градусов и угол зрения 35.
1. Введите матрицы размером 2*2, 3*3, 4*3, 1*3 с произвольным набором чисел. Выполните следующие операции:
Сложение, умножение, транспонирование, инвертирование, вычисление определителя матрицы.
2. Постройте график функций F(x,y)= x2+y2
Для задания индексов элементов массива можно использовать шкалу инструментов ( в ней кликнуть по элементу с индексом) или можно нажать перед вводом индекса на открывающуюся квадратную скобку. Для возврата на уровень строки – нажмите пробел.
Дан массив
al:0=0 al1:=0 al2 :=6 al3 :=4 al4:=-7 al5:=13 al6:=19 al7:=1 al8:=48 al9:=2 al10:=8
Выдать длину массива
length(al)=11 Всегда считается с нуля
Выдать количество элементов в массиве
last(al)=10
Максимальный элемент массива
max(al)=48
Минимальный элемент массива
min(al)=-7
Среднеарифметическое массива
mean(al)=8.545
Дисперсия
var(al)=200.066
Стандартное отклонение
stdev(al)=14.144
a0:=0 a1:=1 a2:=5 a3:=7 a4:=8 a5:=9 a6:=27 a7:=5 a8:=-4 a9:=9 a10:=4
Корреляция
corr(a,al)=-0.095
Отклонение
slope(a,al)=-0.178
Квадратичное отклонение
intercept(a,al)=9.692
Функция ошибок (нормальная дистрибуция)
erf(5)=1
erf(-18)=-1
![]() ![]() ![]() ![]() |
Дифференцирование можно провести численное, а можно символическое. Для численного нужно выбрать символ производной из левой панели инструментов, поставить аргумент дифференцирования, ввести функцию и нажать на знак «=». Получим численное значение производной. Для символического дифференцирования нужно выполнить соответствующую команду из меню Символика |
Вторая, третья и т.д. производные.
Вставьте знак определенного интеграла из левой панели инструментов, расставьте пределы интегрирования, введите функцию и знак равенства. Получается численное значение интеграла.
Знак неопределенного интеграла нужно взять с панели инструментов.
![]() |
получите символьное выражение. |
Если значение переменной было задано, то получим и численное значение, при заданном значении переменной.
Сумма ряда: Произведение ряда:
Упростить выражение в символьном виде. (Символы или Аналитические вычисления)
Результат:
Датчик случайных чисел.
Построить графики функций
Решение уравнений и систем.
Для численного поиска корней уравнения в программе Math Cad используется функция root. Она служит для решения уравнений вида f(x)=0,
где f(x) – выражение, корни которого нужно найти, а x – неизвестное. Для поиска корней с помощью функции root, надо присвоить искомой переменной начальное значение, а затем вычислить корень при помощи вызова функции: root (f(x),x). Здесь f(x) – функция переменной x, используемой в качестве второго параметра. Функция root возвращает значение независимой переменной, обращающее функцию f(x) в 0. Например:
x :=1
root(2·sin (x) –x,x) =1.895
Если уравнение имеет несколько корней (как в данном примере), то результат, выдаваемый функцией root, зависит от выбранного начального приближения.
Если надо решить систему уравнений (неравенств), используют так называемый блок решения, который начинается с ключевого слова given (дано) и заканчивается вызовом функции find (найти). Между ними располагают «логические утверждения», задающие ограничения на значения искомых величин, иными словами, уравнения и неравенства. Всем переменным, используемым для обозначения неизвестных величин, должны быть заранее присвоены начальные значения.
Чтобы записать уравнение, в котором утверждается, что левая и правая части равны, используется знак логического равенства — кнопка Boolean Equals (Логически равно) на панели инструментов Evaluation (Вычисление). Другие знаки логических условий также можно найти на этой панели.
Заканчивается блок решения вызовом функции find, у которой в качестве аргументов должны быть перечислены искомые величины. Эта функция возвращает вектор, содержащий вычисленные значения неизвестных. Например:
[ |
1.823 |
] |
-0.823 |
Чтобы построить двумерный график на координатных осях Х- Y, надо дать команду Insert ► Graph ► X-Y Plot (Вставка ► График ► Декартовы координаты). В области размещения графика находятся заполнители для указания отображаемых выражений и диапазона изменения величин. Заполнитель у середины оси координат предназначен для переменной или выражения, отображаемого по этой оси.
В одной графической области можно построить несколько графиков. Для этого надо у соответствующей оси перечислить несколько выражений через запятую.
Разные кривые изображаются разным цветом, а для форматирования графика надо дважды щелкнуть на области графика. Для управления отображением построенных линий служит вкладка Traces (Линии) в открывшемся диалоговом окне. Текущий формат каждой линии приведен в списке, а под списком расположены элементы управления, позволяющие изменять формат. Поле Legend Label (Описание) задает описание линии, которое отображается только при сбросе флажка Hide Legend (Скрыть описание). Список Symbol (Символ) позволяет выбрать маркеры для отдельных точек, список Line (Тип линии) задает тип линии, список Color (Цвет) - цвет. Список Type (Тип) определяет способ связи отдельных точек, а список Width (Толщина) — толщину линии. Точно так же можно построить и отформатировать график в полярных координатах. Для его построения надо дать команду Insert ► Graph ► Polar Plot (Вставка ► График ►Полярные координаты).Для построения простейшего трехмерного графика, необходимо задать матрицу значений. Отобразить эту матрицу можно в виде поверхности — Insert ► Graph ► Surface Plot (Вставка ► График ► Поверхность), столбчатой диаграммы — Insert ► Graph ► 3D Bar Plot (Вставка ► График ► Столбчатая диаграмма) или линий уровня — Insert ► Graph ► Contour Plot (Вставка ► График ► Линии уровня).
Для отображения векторного поля при помощи команды Insert ► Graph ► Vector Field' Plot (Вставка ► График ► Поле векторов) значения матрицы должны быть комплексными. В этом случае в каждой точке графика отображается вектор с координатами, равными действительной и мнимой частям элемента матрицы. Во всех этих случаях после создания области графика необходимо указать вместо заполнителя имя матрицы, содержащей необходимые значения. Для построения параметрического точечного графика командой Insert ► Graph ► 3D Scatter Plot (Вставка ► График ► Точки в пространстве) необходимо задать три вектора с одинаковым числом элементов, которые соответствуют х-, у- и z-координатам точек, отображаемых на графике. В области графика эти три вектора указываются внутри скобок через запятую. Аналогичным образом можно построить поверхность, заданную параметрически. Для этого надо задать три матрицы, содержащие, соответственно, х-, у- и z-координаты точек поверхности. Теперь надо дать команду построения поверхности Insert ► Graph ► Surface Plot (Вставка ► График ► Поверхность) и указать в области графика эти три матрицы в скобках и через запятую. Таким образом, можно построить практически любую криволинейную поверхность (например, в том числе с самопересечениями.
Диалоговое окно для форматирования трехмерных графиков также
открывают двойным щелчком на области графика.
Аналитические вычисления
С помощью аналитических вычислений находят аналитические или полные решения уравнений и систем, а
также проводят преобразования сложных выражений (например, упрощение). Иначе говоря, при таком
подходе можно получить нечисловой результат .Команды для выполнения аналитических вычислений в
основном сосредоточены в меню Symbolics (Аналитические вычисления). Чтобы упростить выражение
(или часть выражения), надо выбрать его при помощи уголкового курсора и дать команду Symbolics ►
Simplify (Аналитические вычисления ► Упростить). При этом выполняются арифметические действия,
сокращаются общие множители и приводятся подобные члены, применяются тригонометрические тождества, упрощаются выражения с радикалами, а также выражения, содержащие прямую и обратную функции (типа е)
Некоторые действия по раскрытию скобок и упрощению сложных тригонометрических выражений требуют
применения команды Symbolics ► Expand (Аналитические вычисления ► Раскрыть). Команду Symbolics ►
Simplify (Аналитические вычисления ► Упростить) применяют и в более сложных случаях. Например, с ее
помощью можно:
операций, ориентированных на переменную, использованную в выражении. Для этого надо выделить в
выражении переменную и выбрать команду из меню Symbolics ► Variable (Аналитические вычисления ►
Переменная). Команда Solve (Решить) ищет корни функции, заданной данным выражением, например, если
выделить уголковым курсором переменную х в выражении а * x2 + b* х + с, то в результате применения
команды Symbolics ► Variable ► Solve (Аналитические вычисления ► Переменная ► Решить), будут
найдены все корни:
Наконец, самым мощным инструментом аналитических вычислений является оператор аналитического
вычисления, который вводится с помощью кнопки Symbolic Evaluation (Вычислить аналитически) на панели
инструментов Evaluation (Вычисление). Его можно, например, использовать для аналитического решения
системы уравнений и неравенств. Блок решения задается точно так же, как при численном решении
(хотя начальные значения переменных можно не задавать), а последняя формула блока должна выглядеть как
вычисления, отображаемый в виде стрелки, направленной вправо. Любое аналитическое вычисление можно
применить с помощью ключевого слова. Для этого используют кнопку Symbolic Keyword Evaluation
(Вычисление с ключевым словом) на панели инструментов Evaluation (Вычисление).
Ключевые слова вводятся через панель инструментов Symbolics (Аналитические вычисления).
Решение нелинейных уравнений
Найдем корень нелинейного уравнения с помощью функции Root.
Методика выполнения работы
Функция root возвращает значение переменной, при котором выражение становится равным нулю, т.е. F(x) = 0.
Для решения уравнения надо сначала задать начальное значение переменной. Функция всегда имеет несколько решений, поэтому выбор решения определяется начальным значением переменной.
Введем условные обозначения:
f(x) — функция, приравниваемая к 0;
TOL — точность вычисления;
х — начальное значение переменной;
x1 —приближенное решение функции f(x).
В рабочей области экрана с клавиатуры введите функцию
в рабочей области экрана введите точность TOL: = 10-3 и начальное значение переменной x: = 10;
функции, которые не заданы в MathCad в явном виде, необходимо выразить через другие функции, например lg(x) = ln(x) / ln(10).
Решение нелинейного уравнения с помощью функции root.
Вывод на экран значения x1: наберите x1 =
1. 12х1 - 20x2 + 5x3 = 5 . 2. 20х1 - 2х2 + 4х3 = 3
Зх1 + 2х2 + 5х3 = 4 З0х1 + 2х2 + 5х3 = 4
2х1 - 8х2 + 5х3 = 5 2x1 - 6х2 + 5х3 = 5
Зх1 + 2х2 + 2х3 = 6 3x1-20x2 + 2.5х3 = 6
Вариант задания |
Вид функции f(x) |
Пределы изменения аргумента |
Шаг изменения аргумента |
1 |
2 + x - x2 |
0..1 |
0.01 |
2 |
(1 – x)4 |
0,2..1,5 |
0.05 |
3 |
x1/3(1 – x)2/3 |
0,1..1,6 |
0.001 |
4 |
x3 - 6x2 + 9x + 4 |
0,2..1,5 |
0.01 |
5 |
x4-7x2+4 |
2..4 |
0.1 |
6 |
2x2-x4 |
-1..0,8 |
0.01 |
• число ι определяет тип орбитали (значения 0-3 соответствуют s-, p-, d- и f- орбиталям);
• число m определяет магнитный момент электрона и может изменяться в диапазоне от –l до l.
При m=0 форма электронного облака определяется на основе многочленов Лежандра первого рода:
В этом случае
Параметрическое задание соответствующей поверхности имеет следующий вид:
x(θ,ф)=Y(ф)*sin ф* cos θ; y(θ,ф)=Y(ф)*sinф *sin θ; z(θ,ф)=Y(ф)*cos ф
Углы θ,ф изменяются в диапазоне от 0 до 2π.
1.Определите переменную l, которая укажет тип орбитали.
l :=3
2.Построение поверхности будем производить по точкам. Задайте два диапазона, которые будут определять изменение параметров θ, ф , задающих поверхность. Удобно определить границы диапазона в целых числах (через точку с запятой, на экране изображаются две точки), а затем произвести перемасштабирование на отрезок [0; 2π].
3. Определите двумерные матрицы, определяющие значения координат x, y и z в зависимости от значения параметров. Используйте названия переменных X0, Y0 и Z0.
4.Дайте команду Insert ►Graph ► Surface Plot (Вставка ►График ► Поверхность) или воспользуйтесь кнопкой Surface Plot (Поверхность) на панели инструмента Graph (График).
5.В появившейся области графика вместо заполнителя укажите имена отображаемых матриц через запятую, заключив все их в скобки: (X0,Y0,Z0).
6.Чтобы изменить формат построенного графика, дважды щелкните на его области. Откроется диалоговое окно 3-D Plot Format (Формат трехмерного графика).
7.На вкладке General (Общие) установите флажок Equal Scales (Равный масштаб), чтобы обеспечить одинаковый масштаб по осям координат.
8.На вкладке Appearance (Оформление) установите переключатель Fill Surface (Заливка поверхности), чтобы обеспечить заливку построенной поверхности.
9. На вкладке Lighting (Подсветка) включите режим освещения поверхности. Установите флажок Enable Lighting (Включите подсветку),
отключите все источники света, кроме первого.
10.На панели Light Location (Размещение источника) задайте координаты источника света. Используйте кнопку Применить, чтобы сразу видеть последствия сделанных настроек. По окончании настройки закройте диалоговое окно щелчком на кнопке ОК.
11.Путем протягивания мыши в области графика измените направление осей координат, чтобы изображение было видно наиболее отчетливо.
12.Изменяя значение l , можно увидеть форму электронных облаков для разных орбиталей, в том числе и не встречающихся в природе.
Анализ результатов испытаний
Задача. К пружине последовательно подвешивали грузы массой 1,2,3, …,20 кг. В результате был получен список величин удлинения пружины (в миллиметрах). Определить основные статистические параметры полученного набора измерений. Рассчитать жесткость пружины и массу узла, использованного для крепления грузов к пружине, воспользовавшись методом наименьших квадратов.
Таблица измерений:
1 Введите таблицу данных, предназначенных для статистического анализа, как матрицу с двумя столбцами, первый из которых содержит веса грузов, а второй — значения растяжения пружины.
2 Определите число точек в наборах данных с помощью функции rows.
n:= rows(data) n=20.
3
Вычислите среднее растяжение пружины в ходе эксперимента с помощью функции mean.
4 Вычислите медиану значений растяжения пружины при помощи функции median.
5 Вычислите среднеквадратичное отклонение и дисперсию величины растяжения пружины при помощи функции stdev.
6 Определите коэффициенты линейного уравнения являющегося наилучшим приближением для наборов данных. Функция slope позволяет вычислить коэффициент наклона прямой, а функция intersept − свободный член.
9 Сохраните созданный документ.
Документ MathCad состоит из областей различного типа. Текстовые области создаются нажатием кнопки с буквой а на панели инструментов
01 10 2014
1 стр.
В mathcad для задания различных функций y(X)=f(X) для описания f(X) используются как встроенные в пакет различные функции (тригонометрические, специальные и т п.), так и введенные
10 10 2014
1 стр.
Процессор, центральный процессор или cpu (Central Processor Unit) называют «мозгом» компьютера, так как именно он занимается непосредственной обработкой информации и выполняет все
01 10 2014
1 стр.
Цель работы – ознакомится с интерфейсом Mathcad и научиться выполнять простейшие вычисления в системе
09 10 2014
1 стр.
Устранение ошибки “[Microsoft][диспетчер драйверов odbc] источник данных не найден и не указан драйвер, используемый по умолчанию.” 5
14 12 2014
1 стр.
Общие сведения. Нигерия крупнейшая страна Тропической Африки, расположенная на побережье Гвинейского залива. Время gmt + 1 час. Территория 924 тыс кв км
10 09 2014
1 стр.
По мнению компании Gartner [12] в настоящее время процессор Nios II признан самым популярным конфигурируемым в кристалле fpga процессором, лидером по гибкости использования
01 10 2014
1 стр.
Нептуна составляет 50200 км. Новые сведения о диаметре позволили уточнить величину средней плотности Нептуна: она оказалась равной 1,67 г/с Такие характеристики типичны для планет-
10 09 2014
1 стр.