Перейти на главную страницу
2.2. Создание информационных систем. Обеспечение обслуживания и развития информационных систем.
2. 3. Планирование в среде информационных систем.
2. 4. Использование и эксплуатация информационных систем. Особенности использования ресурсов информационных систем.
Основой технических элементов ИС являются процессоры и наиболее массовый их вид -микропроцессоры. Хотя непосредственно в качестве самостоятельных элементов системы они, естественно, не используются, но влияние их характеристик на возможности ИС в целом велико и будет возрастать. В середине и конце 90-х гг. на рынке было представлено несколько семейств процессоров разной мощности и разных фирм.
Компания Intel оставалась лидером в области процессоров персональных компьютеров и в 90-е гг. К началу 1996 г. в мире насчитывалось уже 187 млн. ПК с процессорами Intel, это около 80"/о мирового парка. В 90-е гг. фирма выпустила процессоры Pentium, Pentium ММХ, Pentium Pro, Pentium II и Pentium III со все более высокими тактовыми частотами.
Известная американская компания AMD (Advanced Micro Devices), основной конкурент фирмы Intel , создает микропроцессоры, аналогичные моделям Intel, причем в ряде случаев превосходящие их по характеристикам и к тому же более дешевые. Следует отметить, что фирма AMD сыграла положительную роль, лишив Intel роли абсолютного монополиста на рынке микропроцессоров.
Мощные RISC-процессоры (Reduced Instruction Set Computer -компьютер с сокращенным набором команд) играют видную роль в создании ИС. Среди них представлены следующие семейства. Консорциум фирм Apple-IBM-Motorola (альянс AIM) разработал и производит мощный и эффективный процессор PowerPC (РРС). Компания Hewlett-Packard (HP) выпускает семейство процессоров PA-RISC, среди них полностью 64-разрядный РА-8000. Компания SUN Microsystems представила в 1995 г. концепцию Ultracomputing, базирующуюся на 64-разрядных процессорах UltraSPARC 1 и II. Первый из них имеет около 5,2 млн транзисторов, второй - около 5,4 млн. Перспектива фирмы SGI - 64-разрядный процессор R 10000 компании MIPS, содержащий 5,9 млн транзисторов. RISC-микропроцессор Alpha фирмы DEC бессменно лидировал в борьбе за абсолютный рекорд скорости.
Общим итогом второй половины 90-х гг. является вторжение процессоров с архитектурой Intel в область приложений, где доминировали RISC-процессоры, которые традиционно считались более мощными; те, в свою очередь, вторгаются в более высокие сферы. При этом все компании объявили о своих планах как на ближайшее время, так и на перспективу.
В традиционно верхних «эшелонах» микропроцессоров также ведутся перспективные работы и проектируются новые поколения изделий.
Скорее всего 32-разрядные процессоры будут не только сохранять за собой рынок ПК, но и конкурировать на рынке рабочих станций низших классов. Однако пока 64-разрядная архитектура Intel станет неотъемлемой частью настольных систем, пройдет немало времени. Поэтому можно считать, что сохраняется следующее «распределение обязанностей»: 64-разрядные процессоры будут использоваться для серверов и мощных приложений, 32-разрядные - для персональных компьютеров и серверов низших уровней.
На рубеже тысячелетий имеет место заметный прогресс в области компактных процессоров для мобильных и встроенных приложений. Особо требовательный клиент в этом секторе -портативные и мобильные компьютеры, в том числе ноутбуки. Здесь представляет интерес новый процессор Crusoe фирмы Transmeta (США).
Российские возможности в производстве микропроцессоров пока развиваются очень слабо, и отечественный производитель ЭВМ практически полностью зависит от поставок процессоров из-за рубежа.
Для сферы бизнеса и руководителей предприятий технические характеристики вычислительных средств не наглядны. В этих сферах нашла применение универсальная классификация компьютеров по их совокупной стоимости.
Со временем контуры классов изменяются. Во-первых, границы между классами нечетки из-за практически плавного формирования во всех семействах машин рядов однотипных, но существенно различающихся по производительности ЭВМ, что вызывает появление близких вариантов в смежных классах. Во-вторых, прогресс приводит к росту характеристик внутри класса, как бы повышая его, в то время как снижение цен на машины фирмами-конкурентами делает доступными более мощные машины и тем самым переводит их в более низкий класс по стоимости, т. е. играет противоположную роль.
Прямой перенос приведенных классов в нашу отечественную практику пока представить достаточно сложно: рынок средств вычислительной техники развит слабо; объем его невелик; номенклатура изделий формируется на базе самых низших классов; мощные ЭВМ мирового уровня представлены скудно. В связи с этим практическое применение подобной классификации в нашей стране состоится, по-видимому, лишь в будущем.
Кратко рассмотрим характеристики компьютеров различных классов.
СуперЭВМ. ЭВМ класса «супер» - одно из высших достижений прогресса; основная характеристика здесь была и есть производительность, которая всегда неограниченно требуется в особо мощных и ответственных приложениях. Между собой эти комплексы «соперничают» по производительности; итоги «соперничества» регулярно подводятся в виде рейтинг-листа Top-500, включающего 500 самых производительных комплексов со всего мира.
Для исследований в сфере суперЭВМ необходимы значительные средства. Производство же таких машин массовым не бывает, поскольку круг заказчиков весьма узок. Поэтому в сфере суперЭВМ высок уровень риска. В качестве страховки все фирмы этого сектора создают комплексы с несколько более низкой производительностью, но значительно более дешевые и удобные в эксплуатации, которые широко используются прежде всего в качестве суперсерверов мощных сетей.
В секторе суперЭВМ раньше были заняты только немногие компании, имеющие серьезные достижения в области сверхмощных архитектур ЭВМ. Это прежде всего International Business Machines (IBM), Burroughs (впоследствии - Unisys), Control Data Corporation (CDC) и Cray Research (все США), Siemens (ФРГ), японские фирмы. В числе самых производительных машин в конце 60-х гг. была и отечественная ЭВМ БЭСМ-6.
В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. ЭВМ - машины для крупно-маштабных задач.
1.Для решения сложных и больших научных задач, в управлении, разведке
2.Новейшее архитектурные разработки с использованием современной элементарной базы и арифметических ускорителей
3.Проектирование и имитационное моделирование
4.Повышение производительности
5. Централизованное хранилище информции
Борьба идет и за первую позицию в рейтинге, т.е. за абсолютный рекорд производительности. Достигнутая производительность уже давно перешагнула за миллиард операций в секунду -гигафлопные компьютеры. Разрабатываются и создаются компьютеры, выполняющие уже триллионы (!) операций в секунду -терафлопные компьютеры.
Эти результаты основаны прежде всего на значительных достижениях в области архитектур вычислительных машин. Специальные многокристальные процессоры для суперЭВМ постепенно уступили лидерство мультипроцессорным параллельным архитектурам на основе множества стандартных микропроцессоров, объединяемых в параллельное решающее поле, производительность которого может наращиваться за счет расширения состава. Министерство энергетики США финансирует в этом направлении работы по программе ASCI (Accelerated Strategic Computing Initiative - инициатива ускоренных стратегических вычислений).
В создание суперЭВМ на такой основе включились компании, ранее этим классом не занимавшиеся, - Intel, Hewlett-Packard (HP), SUN (все США).
В любом компьютере все основные параметры тесно связаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память, либо огромную оперативную память и небольшой объем дисков. Следуя логике, делаем вывод: супер-ЭВМ это компьютеры, имеющие в настоящее время не только максимальную производительность, но и максимальный объем оперативной и дисковой памяти (вопрос о специализированном ПО, с помощью которого можно эффективно всем этим воспользоваться, пока оставим в стороне).
Мощные ЭВМ. Мощные универсальные машины в состоянии обеспечить как выполнение мощных приложений, так и поддержку неоднородных сетей со множеством рабочих станций. По отношению к этим машинам, называемым мейнфреймами, в 70-е и особенно в 80-е гг. сложилось негативное мнение, обусловленное сложностями их эксплуатации и развитием малых машин и переходом на них многих приложений. Спрос на мейнфреймы тогда упал.
Мэйнфрейм – это вычислительная система, изначально ориентированная на бесперебойное исполнение исключительно больших, смешанных рабочих нагрузок при высоком уровне коэффициента использования системы, соответствующего заданному уровню сервиса.
В отличие от других систем, мэйнфрейм специально предназначен для автоматического решения бизнес-задач с разнообразными рабочими нагрузками в соответствии с заданным уровнем сервиса. Мэйнфреймы IBM – это серверы высочайшего класса, которые используются различными компаниями для хостинга коммерческих баз данных, обработки транзакций и выполнения комплексных приложений, требующих непревзойденных показателей по устойчивости, целостности, безопасности и степени готовности. Мэйнфреймы беспрепятственно поддерживают тысячи одновременно выполняемых операций ввода/вывода, обслуживают пользователей в глобальном масштабе и обрабатывают до миллиарда транзакций в день. Мощь мэйнфреймов в условиях современного динамичного бизнеса используется для выполнения самых требовательных к ресурсам задач.
https://www.ibm.com/developerworks/ru/edu/mainframe/index.html
В 90-х гг. в мейнфреймах новейших поколений удалось обеспечить повышение эксплуатационных характеристик, снижение цен и затрат на управление вычислительным процессом и поддержку системы. В результате они оказываются эффективнее распределенных систем и обеспечивают более высокие надежность, готовность, функциональные возможности и сохранность данных по сравнению с распределенной средой. Это привело к пересмотру пессимистических оценок таких машин, возникших в 80-е гг.
Не оспаривается преимущество UNIX-рабочих станций и персональных компьютеров при разработке новых приложений; однако точно так же неоспоримы преимущества мейнфреймов в роли мощных и сверхмощных серверов. Для крупных национальных компаний первой характеристикой по-прежнему остается мощность базового компьютера, поэтому они будут всегда нуждаться в мейнфреймах. Так, 77% машин известной фирмы Amdahl (США) используются именно в этом качестве. Мейнфреймы скорее всего сохранят за собой на рынке сектор объемом продаж на уровне 20-30%.
В России мейнфремы используются только в очень крупных корпорациях и государственных структурах - РАО «Газпром», Главное информационное управление «ФАПСИ» и др. Используются модели мейнфремов Comparex, для того чтобы читатель представлял себе мощность этих систем в таблице приведены характеристики мейнфреймов этой фирмы.
На начало 1997 г. в России работает парк мейнфреймов, состав которого отражен в табл. 2.6 [Костров]. Эти данные характеризуют благоприятные условия и широкий фронт возможного в перспективе внедрения машин ESA в отечественные ИС на замену парка ЕС ЭВМ, поскольку на
Таблица 2.1
Доля групп мейнфреймов в России
Тип компьютера |
Доля % |
ЕС ЭВМ типа System/360 |
15,5% |
ЕС ЭВМ типа System/370 |
77% |
IBM 4381; XA/370; ESA/370 |
7% |
ESA/390 (IBM ES/9000) |
0.5% |
В настоящее время AS/400 - самый популярный в мире бизнес-компьютер: их в мире 700 тыс. комплексов, что намного больше, чем любого другого. В России эти машины распространены не столь широко, хотя банки, госструктуры и некоторые предприятия строят свои системы на их базе и продажи исчисляются десятками; в 1999 г. в России насчитывалось около 3 000 комплексов [Костров].
Компьютеры на основе массовых RISC-процессоров разных фирм (SUN, DEC, MIPS, HP, IBM, Silicon Graphics и др.), работающие под управлением ОС UNIX, являются важным классом средних ЭВМ. Старшие модели семейств таких ЭВМ могут иметь настолько значительную производительность, что могут использоваться и как серверы в сетях, и как специализированные комплексы для работы с мощными приложениями.
К середине 90-х гг. произошли радикальные изменения по всем направлениям в классе UNIX-машин. Практически все производители приняли стандарт открытых систем. Это привело к уверенной интеграции таких машин в неоднородные вычислительные структуры и к эффективной работе в качестве серверов в тех системах, где применение майнфрейма неприемлемо, например, из-за его высокой стоимости. Важно еще и то, что эти ЭВМ являются открытыми как по линии программных (у мейнфреймов открыты только внешние программные протоколы), так и по линии аппаратных средств. Сочетание высокого быстродействия процессора и 64-разрядной обработки позволило этим машинам стать идеальными серверами многопользовательские систем, за ними закрепилось наименование UNIX-серверы.
С появлением мощных микропроцессоров Intel (сначала i386, i486, а затем Pentium, Pentium Pro, Pentium II и Pentium III) ПК, работающие под ОС Windows, стали сближаться с рабочими станциями по техническим характеристикам. Это привело к стремительному снижению цен на рабочие станции: младшие их модели сопоставимы по ценам с мощными ПК. Вместе с тем в применении рабочих станций много характерных особенностей в части используемых программных средств и технологий. Поэтому проблема соотношения между ПК и рабочими станциями была и есть существенно сложнее, чем просто уровень продажной цены.
Особый интерес в настоящее время представляют также рабочие станции на основе RISC-процессоров для особо мощных приложений.
Первые такие компьютеры - так называемые графические рабочие станции (Workstation) -строились сразу на 32-битных, а затем и на 64-битных процессорах. Они создавались под сложные САПР, научные расчеты и задачи моделирования в различных наукоемких сферах, поддерживались ОС UNIX и стоили десятки и даже более ста тыс. долл.
С появлением мощных микропроцессоров Intel (сначала i386, i486, а затем Pentium, Pentium Pro, Pentium II и Pentium III) ПК, работающие под ОС Windows, стали сближаться с рабочими станциями по техническим характеристикам. Это привело к стремительному снижению цен на рабочие станции: младшие их модели сопоставимы по ценам с мощными ПК. Вместе с тем в применении рабочих станций много характерных особенностей в части используемых программных средств и технологий. Поэтому проблема соотношения между ПК и рабочими станциями была и есть существенно сложнее, чем просто уровень продажной цены.
Интересно отметить, что основная доля ПК используется в домашних условиях, на втором месте среди потребителей ПК - малый бизнес. В связи с этим спрос на них постоянно высокий, а в сфере их создания и производства постоянно ведутся интенсивные работы, причем динамизм этого процесса чрезвычайно высок.
Основа ПК - микропроцессор: совершенствуются микропроцессоры, прогрессируют и ПК. Их производство - массовый и доходный бизнес. Поскольку ресурсы, требуемые для этого, не столь велики, как для производства мощных ЭВМ, в этом секторе работают многие компании - как именитые (brand name), так и малые фирмы, а также вообще безымянные (no name). К середине 90-х гг. основу мирового рынка стала составлять продукция известных фирм.
Здесь можно отметить, что к этому рубежу первое место в мире на рынке ПК уже вполне уверенно удерживала фирма Compaq (США) как по количеству проданных машин, так и по объему продаж, оттеснив в этом секторе компьютерного рынка бессменного лидера прошлых лет компанию IBM.
Общий объем производства все эти годы рос ощутимо, количество продаваемых машин исчисляется десятками миллионов. Лидеры выпускают за год миллионы машин; фирмы, производящие менее 100 тыс, шт., относятся к малым.
«Потребление» ПК в различных странах очень сильно различается. Львиная доля их до сих пор продается в США, хотя эта доля несколько сокращается и составляла в 1995 г. уже только (!) около 39% - 22,5 млн шт.; в 1988 г. эта доля была более значительной - 10 млн из 17 млн шт. (60%). Однако число машин, продаваемых в США, растет ощутимо.
Общее число имеющихся в России ПК назвать сложно в силу традиционной для российского бизнеса закрытости данных. В 2000 г. оно оценивалось на уровне 7 млн., в том числе около 4,5 млн в сфере экономики. Это очень мало, особенно если учесть, что в стране приобретается мало компьютеров других типов.
Однако, структура мирового рынка информационных технологий достаточно равномерна, ПК в ней играют хотя и заметную, но совсем не доминирующую роль. Распределение объема мирового рынка информационных технологий по типам компьютеров представлена в таблице 2.7. Видно, что значительное место занимают информационные услуги - сервис (Service) и обслуживание (Maintenance), а также продажа программного обеспечения (ПО).
Многие специалисты к техническим средствам ИС организаций относят средства организационной техники (оргтехники) [3; 1]. Средствами организационной техники называют средства механизации и автоматизации управленческого труда. Они предназначены для автоматизации обработки документной информации компании. К этим средствам относится большой перечень устройств и приспособлений, начиная от карандашей и ручек и заканчивая сложными системами обработки документов.
Применение средств оргтехники связано с обработкой документной информации и организацией управленческого труда. Классификация средств оргтехники осуществлялась по функциональному принципу и закреплена в соответствующем ГОСТ:
Определенную роль в формировании нижнего уровня средств связи в последние годы играет связь с использованием мобильных телефонных аппаратов, прежде всего так называемых сотовых телефонов. Эти аппараты также становятся все более многофункциональными, обеспечивая интеграцию с системами передачи и обработки информации.
Первичные сети объединяются в магистральные каналы, от степени развития которых в первую очередь зависят возможности межрегиональной, национальной и глобальной информационной технологии. За последние годы Россия интегрировалась в мировое телекоммуникационное пространство. Многие интернациональные и транснациональные компании создавали для себя глобальные информационные сети, поскольку этого требовала их основная деятельность (межбанковские расчеты, грузовые и пассажирские перевозки, системы телевидения и связи, многие промышленные производства и т.д.). Это означает, что ИС, создаваемые такими компаниями, с необходимостью становятся глобальными. Более того, со столь же неотвратимой необходимостью ИС разных компаний кооперируются между собой. Так возникли ИС коллективного пользования.
Интернет
Создание информационных систем. Обеспечение обслуживания и развития информационных систем
04 09 2014
3 стр.
Тема Объективная необходимость нововведений как особой науки – инновационного менеджмента
16 12 2014
18 стр.
С другой стороны, промышленное использование гомогенных каталитических процессов ставит задачу создания катализаторов многократного использования. Один из путей решения этой пробле
11 10 2014
1 стр.
Ордена искусств и литературы. Г-жа X. Тоффлер за ее вклад в развитие социальных наук отмечена почетной медалью Президента Италии. Э. и X. Тоффлер женаты в течение 45 лет, имеют взр
14 10 2014
1 стр.
17 12 2014
1 стр.
Манипулирование строками и регулярные выражения 95 Глава Повторное использование кода и создание функций 115
13 10 2014
1 стр.
Развитие – это качественные изменения в организме, заключающиеся в усложнении его организации, а также их взаимоотношений и процессов регуляции
10 10 2014
1 стр.
25 12 2014
1 стр.