Перейти на главную страницу
13 .Основой методики начального обучения математике. Под.
Ред.А. С. Пчелко.-М. Просвещение, 1965-375с.
17. Анциферова Л. И. 0 закономерностях элементарной по
18. Аристова Л. П. Активность учения школьников -М" Просвещение,
27. Богоявленскии Д.Н. Менчинская Н. А Психология усвоения
28. Бумашкина Н.Б система развивающих заданий в процесс
1. Генетикалық немесе конструктивтік (ұғымның шығу тегін көрсететін) тәсілмен, мысалы: үшбұрыш, шеңбер ұғымдарын
анықтау.
4. Аксиоматикалық (ұғым бастапқы деп есептелініп, олардың
уғымын аксиомалар арқылы (Пеано аксиомаларына негіздей : отырып) енгізу.
5. Ең жақын тегін және тұрлік айырмашылығын айқын бөліп ішрсету" бұл тәсілдің мәнісі анықталатын ұғымды негізгі және бурыннан белгіліұғымдарға келтіру болып табылады" пркьпы, мысалы: квадрат ұғымын анықтау.
Алгоритм ұғымы. Туғанна бастап баланы тәрбиелеу олардан -әртұрлі ережелерді (ертеңгісін жуыну, киіну және шешіну, тамақ *5 ішу, жолдан өту және т.б.) меңгеруді және қатаң орындауды талап етеді. Одан әрі бала-бақшада және мектепте тәрбиеленушінің орныққан күн тәртібі болады және оларды оқыту белгілі бір реттпен өтеді, ал барлық мүмкін болатын ойындар ереже бойынпіа уйымдастырылады. Демек, кез-келғеч іс-әрекет анықта-ігаіі лха\ (уйғарым) бойынша орындалады. Адам жас кезінен бастаи-ак
28
күнделікті өмірде көбінесе, оның не екенін білмесе де әр алуан алгоритмді меңгереді және орындайды.
Сонымен тәжірбиеден сезіну "алгоритм" деп берілген типтес есептердің ішінен оның кез-келгеп дербсо іурін шсшуде қандаи әрекеттерді және қандай ретпен атқарудың қажеттігін анықтайтын көпшілікке түсінікті және дәл жарлықты айтады" (Формирование элементарных математических представлений у дошкольников /под ред. А.А.Столяра. - М.: Просвещение, 19898.) деуге негіз болып отыр. Бұл қатаң математакалық анықтама емес, тәжірибеде байқалғандарға сүйеніп алгоритм ұғымын түсіндіру ғана.
Алгоритм, алгорифм - математиканың негізгі ұғымдарының (категорияларьшың) бірі болғандықтан тікелей тәжірибеге сүйеніп түсіндіріледі және қарапайым ұғымдардың терминдері аркылы
29
оған формальді анықтама, көбінесе, берілмейді. Мәселен, бастауыш мектептен белгілі "баған тұрінде" қосу, азайту және көбейту, сондай-ақ "бұрыштап" бөлу ережелері алгоритмдер болып табылады.
Мысалы, жоғарыда келтірілген арифметикалык амалдардың | алгоритмдеріне алынатын мүмкін нәтижелер - ондық санау жүйесінде жазылған натурал сандар болуы, ал мүмкін болатын бастапқы деректер - осындай сандардың реттелген парлары болуы керек.
Сонымен, жарлықтың мазмұнында алгоритмдік процесті атқарудың нүсқауларын басқа, мыналар да кіреді.
аяқталатын (аяқталмайтын) болса, онда қарастырмақшы мүмкін болатын бастапқы деректерге алгоритм жарамды (жарамды емес) болады.
Алгоритм ұғымы тек есептеу процесімен ғана емес, сонымен бірге есептің тұріне, типіне (тобына) немесе қандай есептің тұріне, | типіне және оның қандай топқа немесе класка тиісті екеніне сәйкес болатын есептің шешуімен байланысты.
"Алгоритм - есптің беріліп отырған тұріне жататын кез-келген есепті шешуге арналған саны шектеулі қайсы бір әрекеттерді орындау туралы дәл және нақты нүсқаулардың жиынтығы". (Лапчик М.П. Обучение алгоритмизации. - Омск, 1977.)
"Алгоритм (алгорифм) - белгілі бір класс күрайтын жиынтықтағы есептердің шешуге арналған нақты операциялар жүйесін ретімен орындау жайындағы дәл және накты жарлык". (Математика в понятиях, определениях и терминах, ч. 1/Под ред. Л.В. Сабинина. -М.:)
Жалпы алғанда, алгоритм бастапқы деректен ізделінеді нәтижеге қарай өрбиді де саны шектеулі қадам (әрекет) жасағаннан кейін нәтижеге жеткізеді, алайда деректердің белгілі шекарада өзгеруі мүмкін.
"Алгоритм" сөзі позициялы ондық санау жүйесінде көп таңбалы сандармен арифметикалык амалдар орындаудыті ерсжссім алғаш рет түжырымдаған IX ғасырдағы өзбек математигі - әл-Хорезми (арабша - Хорезмнен шыққан дегенді білдіреді немесе
31
аяқталатын (аяқталмайтын) болса, онда қарастырмақшы мүмкін болатын бастапқы деректерге алгоритм жарамды (жарамды емес) болады.
Алгоритм ұғымы тек есептеу процесімен ғана емес, сонымен бірге есептің тұріне, типіне (тобына) немесе қандай есептің тұріне, типіне және оның қандай топқа немесе класқа тиісті екеніне сәйкес болатын есептің шешуімен байланысты.
"Алгоритм - есптщ беріліп отырған тұріне жататын кез-келген есепті шешуге арналған саны шектеулі қайсы бір әрекеттерді орындау туралы дәл және нақты нүсқаулардың жиынтығы". (Лапчик М.П. Обучение алгоритмизации. - Омск, 1977.)
"Алгоритм (алгорифм) - белгілі бір класс құрайтын жиынтықтағы есептердің шешуге арналған нақты операциялар жүйесін ретімен орындау жайындағы дәл және нақты жарлык". (Математика в понятиях, определениях и терминах, ч. 1/Под ред. ; Л.В. Сабинина.-М.:)
Жалпы алғанда, алгоритм бастапқы деректен ізделінеді нәтижеге қарай өрбиді де саны шектеулі қадам (әрекет) жасағаннан кейін нәтижеге жеткізеді, алайда деректердің белгілі шекарада өзгеруі мүмкін.
"Алгоритм" сөзі позициялы ондық санау жүйесінде көп таңбалы сандармен арифметикалык амалдар орындаудьш ерсжссін алғаш рет түжырымдаған IX ғасырдағы өзбек математигі - әл-Хорезми (арабша - Хорезмнен шыққан деғенді білдіреді немесе
31
латыншалағанда АІ£огііһті) есімінен шьжкан. Оның еңбектері арқылы ондық санау жүйесіндегі сандарға амалдар қолдану тәсілі Европаға тарады және бұл сесптеу тәсілдері ғалым есімінің латынша окылуына (транскршщиясына) ораи алгоритмдер деп аталып кетті.
Ұзак уақыт бойы алгоритм ұғымының дәл анықтамасы математикада болмады. Мүны осы ұғымның көлемін анықтаудағы қиындықпен қатар кейбір есептерді шешу алгоритімнің жоқ екендігі ашылғаннан кейін ғана осы ұғымның анықтамасын берудің қажеттілігі айқындаоа түскендігінен деуге болады. Алгоритмнің нақты анықтамасын бірнеше математиктер тек қана XX ғасырдаберді. Бұл анықтамалардың формалары әртұрлі болғанымен кейінірек олардың эквивалентті екендігі анықталады. Және де XX ғасырдың 20-30 жылдарында алгоритмдердің жалпы (ортақ) қасиетін зерттейтін математиканың бір бөлімі - алгоитмдер теориясы қалыптаса бастады.
Алгоритм - математиканың және әр тұрлі автоматгы құрылғылардың, соның ішінде қазіргі электорнды есептеу машиналарының (ЭЕМ) көмегімен информацияны (мәліметгерді)
сақтау, турлендіру және ұсыну тәсілдерін зерттейтін, математикадан бөлініп шыққан жас ғылым саласы информатиканың іргелі ұғымдарының бірі. Кейбір іс-әрекетті I орындауға қатысты алгоритмнің болуы осындай іс-әрекеттің әр I турлі автоматты құрылғыларға, роботтарға, ЭЕМ-ға беріп коюдың қажетті шартты болып табылады.
нөл ұғымдары
Бұл ұғымның маңыздылығы туралы ғалымдар мынандай шіукірлер айтқан. Мәселен, Э.Борель (1871-1956): "Адамдардың рбілімі онда санның қандай рол атқаратынына байланысты Ғылым атына ие болуға лайық", - деп жазды. С.Стевин (1548-1620) былай |еп жазды: "Сандардың арасыида гажайъш келісшділік пен ^йлесімділіктің бары соншалық, біз олардың керемет заңдылығы уралы күндер мен түндер бойы ойлануымыз керек...".
Натурал сан ұғымының дамуы ерте заманда адамның заттар жиынтығының саньш оларды санамай-ак, яғни өзара бір мәнді сәйкстікті тағайындау негізінде қабылдануымен сипатталады. Өте ұзақ дамудың нәтижесінде адам натурал сандарды жасаудың келесі кезеңіне жетгі - жиынды салыстыру үшін аралық жиындарды қолдана бастады. Бұл кезеңде сан саналатын жиындарлан ерекшеленген жоқ. Адам аралық жиындарДЫ қолдаиуға үйренгеннбн кейін барып қана объектілер мея йралық ■- жиьгііДар; арасындағы ортақ нәрсені анықтады. Аралық - жиындарды, онын, элемен'пері табиғатынан дерексіздендіру мүмкін болғаннан кейіи натурал саіі туралы түсінік пайда болды.
Уақыт өте келе адамдар сандарды атауды1 ғаиа емёс,' оларды белгзлеуді де, сондаи-ақ олармен амавдар ЬрЬіндаудьі да үйренді. Осынау мәселелерді шещудегі көіттегён кикіғііітыльіктар Вжёліі' Үндістанда сандардың ондық жазуы мен нөл ұғымының жасалуы нәтижесінде ғана жойылды. Әуелде санның жоқтығын білдіртеі! нөл теріс сандар ұғымы енгізілгсннен кейін ғана сан ретінде карастырылатын болды. Натурал сандар жиыйының ' шексіздіғі туралы түсінік те бірііндеп калыитасгы. "Нагурал сан" термйнін
тұңғыш рет римдік ғалым А.Боэций (шамамен 480-524 жылдар) қолданған.
Санаудың ондық жүйесі тұрінде біздің заманымыздың шамамен VI ғасырында Үндістанда қалыптасты. Нөл үшін ерекше белгі енгізу үндістандық ғылымның маңызды жетістігі болады. Нөл енгізілгеннен кейін ғана жазудың ондық жүйесі толығынан аяқталды. Алдымен нөлдің абақтың тиісті разрядында тастардың жоқтығын белгілеу үшін пайда болуы да ықтимал.
Натурал сан ұғымы қалыптасқаннан кейін сандар дербес лбъектілерге айналды және оларды математикалык объектілеп ретінде зерттеудің мүмкіндігі пайда болды. Арифметика -сандарды және олармен жүргізілетін амалдардызеттейтін ғылым, Ежелгі Шығыс елдерінде: Вавилонда, Қытайда, Үндістанда, Египетте дүниеге келді. Осы елдерде жинақталған математикалық білімдерді Ежелгі Грецияның ғалымдары дамытып, жалғастырды. Орта ғасырда арифметиканьщ дамуына Үндістанның, араб елдері мен Орта Азия математиктері, ал XII ғасырдан бастап - европалық ғалымдар үлес костьт.
XIX ғасырда ғалымдардың назары натурал санның
математикалық теорияларын, яғни натурал сандармен есептеулер
іжүргізуге негіз болған теорияларды құруға және логикалық
терең заңдылықтарды зеттеу қазіргі уақытқа дейін жалғастырылып,
сандар теориясын да дамытуда.
Натурал сандар ұғымыныц соншалық қарапайым л^шс іабиі-и
■көрінетіні сондай, ғылымда үзақ уақыт бойы оны қандай да болсын
1
рарапайым ұғымдардың терминдерімен анықтау туралы мәселе қойылған жоқ.
Натурал санды және сандардың натурал катарын анықтаудың мейлінше әр тұрлі жолдары және соған сәйкес натурал сандар іжиынындағы операциялар (амалдар) мен қатынастарды енгізуге Іқатысты да тұрліше жолдар орын алып келеді. Натурал сандар жиынымен бір ғана элементтен - 0 санынан тұратын жиынның бірігуі болып табылатын теріс емес бүтін сандар жиынын құрудың әртұрлі жолдары осыған байланысты.
Теріс емес бүтін сандар жиынын құрудың теориялық-жиындық тәсілі тұрғысынан, натурал сан деп бос емес шектеулі бір-бірімен эквивалентгі жиындар класының ортақ қасиетін айтады. Ондай тәсіл мейлінше көрнекі және істің шын мәнісінде мектепке өтілетіндерге дәл келеді. Алайда оның бір елеулі кемшілігі бар: негізгі ұғым - шектеулі жиын, бұл жағдайда белгісіз болып қалады (анықталмайды). Шектелу жиындардың айырмашылыктарын I түсіндірген кезде, әдетте, шектеулі жиындар барлық элементтерін
36
"толық атап шығуға", бірінен соң бірін оларды "көрсетіп беруге" болатын жиындар дейді, немесе бұлар элементтерін "санап шығуға" болатын жиындар деп аталынады.
Сондықтан сандық теорияда натурал сан әуес баста-ақ шектеулі жиын элементтерінің саны ретінде, яғни жалпы ұғым болып табылатын кез-келген жиынның қуаты ұғымының жеке жағдайы ретінде қабылданғанымен, натурал сандар арифметикасын бастапқы оқыту натурал сандар туралы алғашқы түсініктерді қалыптастырудың нақты жолдарын ескемей кете алмайды. Сондықтан натурал сандар заттарды санау кезінде қолданылады деп есептейді. Санау процесшде реттік натурал сандарды пайдаланылады, ал жиынның барлық элементтерін санап шыккан соң осы жиынның сандық сипаттамасын алады. Басқа сөзбен айтқанда, санау кезінде сандардың натурал қатарының кесіндісін пайдаланылады.
Біз натурал сан мен нөл ұғымдарының қалай пайда болып, қалай дамығанын білеміз Сондай-ақ бұған дейін теріс емес бүтін сандар жиынын (Конемесе Ео) әр тұрлі )финиттік, теориялык-жиындық және аксиоматикалық) тұрғыдан құруды да қарастырғанбыз. Мүнымен қоса иатурал санды шамаларды өлшеудің нәтижесінде шығарып алуға болатындығын да оқығанбыз, яғни өлшенетін шаманы әркайсысы өлшем бірлігіне тең бірнеше бөліктерге бөлу, қандай да болсын, әйтеуір бер мағынада мүмкін болса, онда өлшеу нәтижесі (немесе шаманың өлшемі) натурал сан арқылы өрнектеледі.
Жалпы алғанда, сан және фигура ұғымдары, басқа ешқайдан емес, тек шындық дүниеден алынған. Адамдардың санауға үйренген, япш алғашкы арифметикалық есеп шығаруға уйренген он саусағын не десеңіз ол деңіз, тек әйтеуір ол ақыл-ойдың еркін творчествосының жемісі емес. Санау үшін, саналуға тиісті нәрселердің болуы ғана емес, сонымен бірге, бұл нәрселерге көз жібергенде, олардың санынан басқа қасиеттеріне алаңдамайтын қабілет те болу керек, ал ол қабілет - тәжірибеге сүйенғен үзақ тарихи дамудың нәтижесі.
Натурал сандардың N жиыны сан ұғымын кеңейту процесіндеғі бастапқа жиын болып табылады. Өте ерте заманда пайда болған натурал сан ұғымы көптеген ғасырлар бойы жалпыланып, кейейе түсті. Сонда сан жайындағы түсініктер
Б.э.д. V ғасырда, Пифагор мектебінде кесінді үзындығын дәл өлшеу үшін оң рационал сандардың жеткіліксіз болатындығы тағайындалды. Кейінірек, осы мәселенің шешілуіне байланысты I иррационал сандар пайда болды, ал XVI ғасырда ондык ■ бөлшектердің енгізілуіне байланысты нақты сандарға қарай қадам жасалды. Нақты санның қатаң тұрдегі анықтамасы меы нақты Цсандар жиынының қасиеттері XIX ғасырда түжырымдалды. ' Нақты сан ұғымы сандар қатарындағы ең соңғы ұғым емес. Сан ұғымын кеңейту прцесін одан әрі жалғастыра беруге болады және бұл процесс жалғасады да - мүны математиканың және басқа да ғылымдардың дамуы талап етуде. Мәселен, комплекс сандар теріс сандар сияқты, математика ғылымының іштей дамуына, атап айтқанда алгебралык теңдеулерді шешу тәжірибесіне байланысты пайда болды. Тарихи тұрғыдан алғанда, комплекс сан ұғымы XVI
39
ғасырда екшші дәрежелі теңдеулерді шешу мәселесінен келіп шыққан. Комплекс сандар нақты сандар сияқты мөлшерді сипаттағанымен, нақты сандар терминдерінеде құрастырылған есептерді шешуде оларды қолданудың пайдасы тиеді. Таза математикалық есптерді шешу барысында да комплекс сандарды қолдану маңызды болып саналады. Мәселен, куб теңдеулерінің нақты түбірлерін табу комплекс сандарға амалдар колдануды талап
етеді. Комплекс сан деп ^^(мұндағы а,Ье К, ал / - қандай да бір
символ) тұріндегі өрнекті түсінеді. Барлық комплекс сандар жиынын С деп белгілейді. Сонда 2=а+Ыкомшіскс сандардағы «з-ны оның нақты бөлігі Ь санын жорымал белгі деп атайды. Комплекс санды жазықтықта вектор тұрінде немесе нүкте тұрінде кескіндеп көрсетуге болады.
Сан ұғымын жалпылау барысында қазіргі кезде гиперкомплекс сандар ұғымы келіп шықты. Гиперкомплекс сан ұғымы комплекс санға қарағанда неғүрлым кең ұғым. Гиперкомплекс сандардың қарапайым мысалы физика мен техникада, атап айтқанда электр және элкетро-техника теориясында қолданылатын векторлық алгебраның дауына себепші болған кватерниондар болып табылады. Сондай-ақ, самолет қанатының прфилін (пішінін) анықтау мен самолет теориясының негізгі заңдылықтарын қорытындылауда комплекс сандарлың қолданылуын ерекше атап айтуға болады.
Сан жайындағы жаңа түсініктердің пайда болумен бірге осы жаңа сандық объектілерге амалдар қолдану ережелерін негіздеу
Математика қазіргі уақытта көптеген салаларына дендеп еніп, абстракциялык сипатқа ие болған, бір кездері адпмнын әр тұрлі қызмет саласындағы практикалык кажеггіліктерінен туындаған
25 12 2014
6 стр.
Осы «Қамқоршылық және қорғаншылық бойынша анықтама беру» жөніндегі мемлекеттік қызмет көрсету регламентінде (бұдан әрі Регламент) келесі ұғымдар қолданады
25 12 2014
1 стр.
Осы «Негізгі орта, жалпы орта білім беру ұйымдарында экстернат нысанында оқытуға рұқсат беру» мемлекеттік қызмет регламентінде (бұдан әрі – Регламент) регламентте келесі негізгі ұғ
25 12 2014
1 стр.
Осы «Куәландырушы орталықтарды аккредиттеу» регламенттінде (бұдан әрі Регламент) мынадай негізгі ұғымдар пайдаланылады
09 10 2014
1 стр.
Математикалық физика теориясының іргелі ұғымдарымен таныстыру, негізгі әдістерді үйрету және оларды қолдану білуге дайындау, әр түрлі жеке дара ұғымдар мен зерттеулерді бір жүйеге
15 10 2014
1 стр.
Террордан терроризмге дейін. Терроризм психологиясының негізгі ұғымдары
18 12 2014
5 стр.
Мемлекет пен құқық туралы, мемлекеттік құқықтық құбылыстар туралы негізгі ұғымдар
25 12 2014
1 стр.
Мемлекет пен құқық туралы, мемлекеттік құқықтық құбылыстар туралы негізгі ұғымдар
17 12 2014
1 стр.