Методы и модели в экономике |
Методические указания и контрольные задания для студентов заочной формы обучения по специальности 080507 «Менеджмент организации» |
|
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
Государственное образовательное учреждение
Высшего профессионального образования
Филиал в г. Воскресенске
Кафедра Прикладной математики
Методы и модели в экономике
Методические указания и контрольные задания для студентов
заочной формы обучения
по специальности 080507 «Менеджмент организации»
Составила: старший преподаватель кафедры
Прикладной математики Меньшова И. В.
г. Воскресенск, 2011г.
Учебный план изучения курса рассчитан на 100 часов, из которых для студентов заочной формы обучения отводится 16 часов на аудиторную работу и 84 часа – на самостоятельную. Также учебным планом предусмотрено выполнение контрольной работы для заочной формы обучения.
В пособии приведены необходимые методические материалы и указания для подготовки к зачету и выполнению контрольной работы, а также задания контрольной работы.
Введение 3
Общие методические указания 4
Рекомендуемая литература………………………………………………………………………………........5
1. Общие положения……………………………………………………………………………………………………………….29
2. Отбор факторов для построения функции спроса……………………………………………………………..34
3. Определение формы связи между спросом на товар и доходом потребителя. Расчет параметров уравнения парной линейной регрессии……………………………………………………………36
4. Расчет коэффициентов корреляции и детерминации. Проверка правильности выбранных факторов и формы связи………………………………………………………………………………………………………….42
5. Оценка точности построенной модели. Статистическая проверка гипотез о значимости параметров уравнения регрессии и самого уравнения в целом…………………………………………..45
6. Определение и анализ эластичности потребления по доходу………………………………………….49
7. Модели множественной регрессии. Построение функции спроса (потребления) от двух факторов…………………………………………………………………………………………………………………………………..51
Приложение А. Задания для контрольной работы…………………………………………..56
Приложение Б. Тесты контроля усвоенного материала………………..………….....58
Приложение В. Титульный лист контрольной работы...………………..………….....62
Введение
В настоящее время процессы принятия решений в экономике опираются на достаточно широкий круг экономико-математических методов и моделей. Ни одно серьёзное решение, затрагивающее управление деятельностью отраслей и предприятий, распределения ресурсов, изучение рыночной конъюнктуры, прогнозирование, планирование и т.п., не осуществляется без предварительного математического исследования конкретного процесса или его частей.
В этой связи изучение дисциплины «Методы и модели в экономике» направлено как на формирование у студентов понимания роли современной математики в экономике, так и на изучение наиболее важных экономико-математических методов исследования моделей и задач оптимизации.
Задачи данной дисциплины состоят в изучении математических методов социально-экономических процессов (СЭП), применения базовых методов математического моделирования СЭП при решении оптимизационных задач и выработке навыков решения трудоёмких прикладных экономико-математических задач с помощью компьютерных технологий.
Цель изучения данной дисциплины – подготовка специалиста экономического профиля к сознательному использованию математических методов исследования СЭП на основе соответствующих базовых моделей.
Изучение дисциплины предусматривает сочетание лекций, практических занятий и самостоятельную работу студентов. На лекциях излагается содержание дисциплины, проводится анализ основных математических понятий и методов. Практические занятия ориентированы на выработку у студентов умения и навыков решения типовых экономических задач. Руководствуясь принципом повышения уровня фундаментальной математической подготовки студентов с усилением её прикладной экономической направленности, предлагаются наиболее экономически значимые задачи, представляющие самостоятельный интерес и дающие возможность относительно продуктивно освоить алгоритм их решения при отсутствии учебника.
После изучения дисциплины «Методы и модели в экономике» студент должен:
- номер варианта контрольной работы соответствует последней цифре учебного шифра студента;
- контрольная работа должна быть оформлена в тетради в клетку или на листах формата А4, где текст работы должен быть написан от руки;
- решение всех задач и пояснения к ним должны быть достаточно подробными; вычисления и чертежи – полными и аккуратными;
- необходимо перед выполнением задания полностью записать его условие;
- для удобства рецензирования рекомендуется оставлять поля.
При сдаче зачёта студент должен дать пояснения к решённым заданиям, выполненным в контрольной работе, а также решить задачи, предложенные преподавателем из списка задач, рекомендованных для самостоятельного решения (см. Практические занятия) или же ответить на вопросы итогового теста (см. приложение).
Рекомендуемая литература:
Основная:
Современная экономическая теория включает как естественный, необходимый элемент математические модели и методы. Использование математики в экономике позволяет, во-первых, выделить и формально описать наиболее важные, существенные связи. Во-вторых, из чётко сформулированных исходных данных и соотношений можно сделать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки. В-третьих, методы математики позволяют индуктивным путем получать новые знания об объекте: оценить форму и параметры зависимостей его переменных, в наибольшей степени соответствующие имеющимся наблюдениям. В-четвертых, использование языка математики позволяет точно и компактно излагать положения экономической теории, формулировать её понятия.
Использование математических методов в сфере управления - важнейшее направление совершенствования систем управления. Математические методы ускоряют проведение экономического анализа, способствуют более полному учету влияния факторов на результаты деятельности, повышению точности вычислений. Применение математических методов требует:
В управленческой практике для решения экономических задач прибегают к различным методам. На рисунке 1 приведены основные математические методы, применяемые в экономическом анализе.
Методы имитации |
Методы моделирования |
Методы обучения, деловые игры |
Методы распознавания образов |
Системный анализ |
Производственные функции |
Методы элементарной математики |
Классические методы математического анализа |
Методы математической статистики |
Эконометрические методы |
Методы математического программирования |
Методы исследования операций |
Методы экономической кибернетики |
Метод теории оптимальных процессов |
Дифференциальное, интегральное, вариационное исчисление |
Методы изучения одномерных (многомерных) статистических совокупностей |
Методы «затраты-выпуск» (межотраслевой баланс) |
Национальное счетоводство |
Линейное программирование |
Блочное программирование |
Динамическое программирование |
Нелинейное программирование(целочисленное, квадратичное, параметрическое и т.д.) |
Методы решения линейных программ |
Управление запасами, износ и замена оборудования |
Теория игр, теория расписаний, теория массового обслуживания |
Методы сетевого планирования |
Математические методы, используемые в экономическом анализе |
Максимум Понтрягина для управления технико-экономическими процессами и ресурсами |
Методы экспертных оценок |
Эвристические методы |
Методы элементарной математики используются в традиционных экономических расчетах при обосновании потребностей в ресурсах, разработке плана, проектов и т. п.
Для изучения одновременных статистических совокупностей служат закон распределения, вариационный ряд, выборочный метод. Для многомерных статистических совокупностей применяются корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа.
Наиболее распространен метод анализа экономики "затраты — выпуск". Метод представляет матричные (балансовые) модели, построенные по шахматной схеме и наглядно иллюстрирующие взаимосвязь затрат и результатов производства.
Данная теория позволяет изучать системы, предназначенные для обслуживания массового потока требований случайного характера. Случайными могут быть как моменты появления требований, так и затраты времени на их обслуживание. Целью методов теории является отыскание разумной организации обслуживания, обеспечивающей заданное его качество, определение оптимальных (с точки зрения принятого критерия) норм дежурного обслуживания, надобность в котором возникает непланомерно, нерегулярно.
С использованием метода математического моделирования можно определить, например, оптимальное количество автоматически действующих машин, которое может обслуживаться одним рабочим или бригадой рабочих и т.п.
Типичным примером объектов теории массового обслуживания могут служить автоматические телефонные станции - АТС. На АТС случайным образом поступают “требования” - вызовы абонентов, а “обслуживание” состоит в соединении абонентов с другими абонентами, поддержание связи во время разговора и т.д. Задачи теории, сформулированные математически, обычно сводятся к изучению специального типа случайных процессов.
Исходя их данных вероятностных характеристик поступающего потока вызовов и продолжительности обслуживания и учитывая схему системы обслуживания, теория определяет соответствующие характеристики качества обслуживания (вероятность отказа, среднее время ожидания начала обслуживания т.п.).
Экономическая кибернетика анализирует экономические явления и процессы как сложные системы с точки зрения законов управления и движения в них информации. Методы моделирования и системного анализа наиболее разработаны именно в этой области.
Применение математических методов в экономическом анализе базируется на методологии экономико-математического моделирования хозяйственных процессов и научно обоснованной классификации методов и задач анализа. Все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные решения по заданному критерию и неоптимизационные (решения без критерия оптимальности).
По признаку получения точного решения все математические методы делятся на точные (по критерию или без него получают единственное решение) и приближенные (на основе стохастической информации).
К оптимальным точным можно отнести методы теории оптимальных процессов, некоторые методы математического программирования и методы исследования операций, к оптимизационным приближенным - часть методов математического программирования, исследования операций, экономической кибернетики, эвристические.
К неоптимизационным точным принадлежат методы элементарной математики и классические методы математического анализа, экономические методы, к неоптимизационным приближенным — метод статистических испытаний и другие методы математической статистики.
Особенно часто применяются математические модели очередей и управления запасами. Например, теория очередей опирается на разработанную учеными А.Н. Колмогоровым и А.Л. Ханчиным теорию массового обслуживания.
Математическими моделями многочисленных задач технико-экономического содержания являются также задачи линейного программирования. Линейное программирование - это дисциплина, посвященная теории и методам решения задач об экстремумах линейных функций на множествах, задаваемых системами линейных равенств и неравенств.
Для производства однородных изделий необходимо затратить различные производственные факторы - сырье, рабочую силу, станочный парк, топливо, транспорт и т.д. Обычно имеется несколько отработанных технологических способов производства, причем в этих способах затраты производственных факторов в единицу времени для выпуска изделий различны.
Количество израсходованных производственных факторов и количество изготовляемых изделий зависит от того, сколько времени предприятие будет работать по тому или иному технологическому способу.
Ставится задача рационального распределения времени работы предприятия по различным технологическим способам, т.е. такого, при котором будет произведено максимальное количество изделий при заданных ограниченных затратах каждого производственного фактора.
На основе метода математического моделирования в операционных исследованиях решаются также многие важные задачи, требующие специфических методов решения. К их числу относятся:
Надежность изделий определяется совокупностью показателей. Для каждого из типов изделий существуют рекомендации по выбору показателей надежности.
Для оценки изделий, которые могут находиться в двух возможных состояниях - работоспособном и отказовом, применяются следующие показатели: среднее время работы до возникновения отказа (наработка до первого отказа), наработка на отказ, интенсивность отказов, параметр потока отказов, среднее время восстановления работоспособного состояния, вероятность безотказной работы за время t, коэффициент готовности.
Задача распределения ресурсов
Вопрос распределения ресурсов является одним из основных в процессе управления производством. Для решения этого вопроса в операционных исследованиях пользуются построением линейной статистической модели.
Для предприятия вопрос образования цены на продукцию играет немаловажную роль. От того, как проводится ценообразование на предприятии, зависит его прибыль. Кроме того, в существующих сейчас условиях рыночной экономики цена стала существенным фактором в конкурентной борьбе.
Сетевое планирование и управление, является системой планирования управления разработкой крупных хозяйственных комплексов, конструкторской и технологической подготовкой производства новых видов товаров, строительством и реконструкцией, капитальным ремонтом основных фондов путем применения сетевых графиков.
Сущность сетевого планирования и управления состоит в составлении математической модели управляемого объекта в виде сетевого графика или модели находящейся в памяти компьютера, в которых отражается взаимосвязь и длительность определенного комплекса работ. Сетевой график после его оптимизации средствами прикладной математики и вычислительной техники используется для оперативного управления работами.
Решение экономических задач с помощью метода математического моделирования позволяет осуществлять эффективное управление как отдельными производственными процессами на уровне прогнозирования и планирования экономических ситуаций и принятия на основе этого управленческих решений, так и всей экономикой в целом. Следовательно, математическое моделирование как метод тесно соприкасается с теорией принятия решений в менеджменте.
Математические модели использовались с иллюстративными исследованиями ещё Ф. Кене (1758г., «Экономическая таблица»), А. Смитом (Классическая макроэкономическая модель), Д. Риккардо (Модель международной торговли). В XIX веке большой вклад в моделирование рыночной экономики внесли математики Л. Вальрас, О. Курно, В. Парето и другие. В XX веке математические методы моделирования применялись очень широко, с их использованием связаны практически все работы, удостоенные Нобелевской премии по экономике (Р. Солоу, В. Леонтьев, Л. Канторович и другие). Развитие макроэкономики, микроэкономики, прикладных дисциплин связано со все более высоким уровнем их формализации. Основу для этого заложил прогресс в области прикладной математики. В России в начале XX века большой вклад в математическое моделирование экономики внесли В.К. Дмитриев и Е.Е. Слуцкий. В 1960-е – 80-е годы экономико-математическое направление было связано, в основном, с попытками формально описать «систему оптимального функционирования социалистической экономики» (Н.П. Федоренко, С.С. Шаталин). Строились многоуровневые системы моделей народно – хозяйственного планирования, оптимизационные модели областей и предприятий.
Математическая модель экономического объекта – это его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков. Иными словами, модель – это условный образ объекта, построенный для упрощения его исследования. Предполагается, что изучение модели дает новые решения в той или иной ситуации.
Можно выделить 3 этапа проведения математического моделирования в экономике:
ставятся цели и задачи исследования, проводится качественное описание объекта в виде экономической модели.
формируется математическая модель изучаемого объекта, осуществляется выбор методов исследования. Далее исследуется модель с помощью этих методов.
осуществляется обработка и анализ полученных результатов.
Математические модели, используемые в экономике, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария: модели макро- и микроэкономические, теоретические и прикладные, оптимизационные и равновесные, статические и динамические.
Основные этапы процесса моделирования уже рассматривались выше. В различных отраслях знаний, в том числе и в экономике, они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования.
Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше "работает" и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д. Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).
Одна из важных особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться "изобретать" модель; вначале необходимо попытаться применить для решения этой задачи уже известные модели.
В процессе построения модели осуществляется взаимосопоставление двух систем научных знаний - экономических и математических. Естественно стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация экономической проблемы приводит к неизвестной ранее математической структуре. Потребности экономической науки и практики в середине ХХ в. способствовали развитию математического программирования, теории игр, функционального анализа, вычислительной математики. Вполне вероятно, что в будущем развитие экономической науки станет важным стимулом для создания новых разделов математики.
Знание общих свойств модели имеет столь важное значение, что часто ради доказательства подобных свойств исследователи сознательно идут на идеализацию первоначальной модели. И все же модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда аналитическими методами не удается выяснить общих свойств модели, а упрощения модели приводят к недопустимым результатам, переходят к численным методам исследования.
В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.
Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных компьютеров удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.
Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.
06 10 2014
6 стр.
10 09 2014
8 стр.
15 10 2014
9 стр.
10 09 2014
1 стр.
15 10 2014
1 стр.
15 10 2014
1 стр.
10 10 2014
4 стр.
07 10 2014
1 стр.