Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1
Выполнил: Мурашко Я.А. 631 гр.


1. Механизмы прижима и подачи 
Механизм зажима. Этот механизм служит для зажима бревна при его распиловке. Бревна зажимаются с боковой поверхности или с торцов. Зажим с боковой поверхности производится при помощи крючьев, которые поднимаются вверх и опускаются вниз до встречи крюка с бревном. При этом вершина крюка внедряется в кряж. Положение зажима на рейке закрепляется поворотом рычага. Рассмотренный механизм зажима применяется на шпалорезном станке ЦДТ-6.
В шпалорезном станке ЦДТ-6-2 зажим с боковой поверхности и вертикальным перемещением крюков осуществляется от индивидуального двигателя через редуктор при помощи цепной передачи.
Зажим распиливаемого бревна с торцов производят двумя упорами, один из которых подвижный, а другой неподвижный. Перемещение упора может осуществляться посредством гидроцилиндра или зубчатой рейки с приводом от электродвигателя через редуктор и ведущую шестерню.

Механизм поперечной подачи. Этот механизм служит для перемещения бревна в поперечном направлении для того, чтобы совместить плоскость пилы с плоскостью пропила. Это перемещение производится перед каждым пропилом.
Подача бревна с зажимными стойками на пилу производится покачиванием тяги рычага, который через собачку и храповик сообщает валу вращательное движение. Подача бревна со стойками в обратную сторону осуществляется покачиванием тяги и рычага. На рычаге имеется собачка, поворачивающая храповик-шестерню, связанную с шестерней. Насаженный на вал храповик с накидной собачкой предотвращает самопроизвольный поворот вала.
На некоторых шпалорезных станках поперечная подача бревен осуществляется при помощи штурвала. Поперечное перемещение бревна с боковыми зажимами может производиться от индивидуального реверсивного электрического двигателя. Принцип перемещения бревна, закрепленного торцовыми зажимами, аналогичен описанному, разница состоит только в том, что при зажиме крюками может перемещаться только в одну сторону, при торцовых зажимах – в любом направлении. Перемещение бревна, закрепленного торцовыми зажимами, производится при помощи гидравлики. Величина поперечного перемещения определяется по специальной линейке или при помощи механизма, имеющего круговую шкалу с двумя стрелками.

2.Особенности рабочего и вспомогательного движения. Что является главным ?

Для получения детали требуемой формы и размеров с заготовки в процессе ее обработки на металлорежущем станке (или станках) снимается в виде стружки избыточный металл.

Форма обработанной поверхности зависит от движений, которые сообщает станок заготовке и инструменту, от согласованности этих движений и вида режущего инструмента. Изменяя параметры движения (скорость, согласованность с другими движениями, направление, траекторию и пр.) и меняя инструмент, можно на одном и том же станке обработать поверхности различной формы.

Процесс снятия стружки осуществляется на станке рабочими движениями (движениями формообразования), которые сообщаются либо инструменту, либо заготовке, либо обоим одновременно.

Рабочими движениями станка являются главное движение, или движение резания, и движение (или движения) подачи; каждое из рабочих движений характеризуется скоростью.

Главное движение обеспечивает срезание стружки с заготовки со скоростью резания v, которая равна скорости схода стружки с заготовки. Наибольшая допустимая и практически целесообразная величина скорости резания зависит от материала обрабатываемой заготовки, инструмента, технологического процесса и других факторов и определяется экспериментально.

Движение подачи происходит со значительно меньшей скоростью. Оно позволяет распространить процесс резания на всю подлежащую обработке поверхность заготовки. Величина (скорость) подачи определяет, при прочих одинаковых условиях, площадь поперечного сечения стружки.

Кроме главных движений, в станке всегда имеют место вспомогательные движения, цель которых подготовить процесс резания, обеспечить последовательную обработку нескольких поверхностей на одной заготовке или одинаковых поверхностей на различных заготовках. К числу вспомогательных движений относятся движения, обеспечивающие транспортирование и закрепление заготовки на станке, подвод режущего инструмента к соответствующей поверхности заготовки и отвод от нее, включение, выключение, изменение скоростей и направлений рабочих движений станка и др.

Рабочие движения в станках осуществляются, как правило, автоматически. Исключение составляют некоторые мелкие станки, на которых подача производится вручную.

Вспомогательные движения могут осуществляться как автоматически, так и вручную. В станках-автоматах все вспомогательные движения практически автоматизированы и выполняются в определенной последовательности самим станком в должные моменты автоматического цикла работы.



3. Механизмы подачи. Двигатель и движитель. (почему для обработки дерева двигатель пост. тока и гидравлические двигатели и режи асинхронные используются.)

Сердцем электропривода станка заслуженно является электродвигатель (ЭД). Количество их серий, типов, конкретных исполнений трудно поддается учету, а тем более описанию. Но, думается, эти сведения домашнему умельцу и не к чему: он ведь имеет доступ к очень ограниченному ассортименту ЭД, обычно устанавливаемых в бытовых приборах и машинах. Они и вызывают у него повышенный интерес. Их чаще всего он применяет в своих конструкциях. О них мы и поведем речь.


Поскольку двигатели постоянного тока в быту находят ограниченное использование, за исключением механизмов привода игрушек, переносных магнитофонов и других малогабаритных устройств, на них мы останавливаться не будем. Отметим только, что двигатели постоянного тока соответствующей мощности находят применение в подвижных средствах, например, на самолетах, кораблях и др., где могут питаться от бортовой сети, а также в различном промышленном оборудовании в силу их высокой экономичности, бесступенчатого регулирования частоты вращения и других положительных качеств. Такие ЭД подключают к сети переменного тока через специальные выпрямители.


А вот коллекторные двигатели переменного тока несмотря на довольно сложное устройство очень широко применяются в быту, поскольку отличаются многими положительными качествами.


Обмотка возбуждения такого ЭД включается последовательно с обмоткой якоря, благодаря чему при изменении направления тока в сети одновременно изменяет


ся направление тока в якоре и полярность полюсов. Направление вращающего момента при этом сохраняется.


Частота вращения ЭД не зависит от частоты тока в сети и может быть очень значительной. Это обстоятельство позволяет применять коллекторные двигатели в пылесосах, вентиляторах и других устройствах, где большая частота вращения рабочего органа диктуется необходимостью. Эти двигатели сохраняют основные характеристики, свойственные коллекторным ЭД постоянного тока, и применяются там, где нужен большой пусковой момент (полотерные машины, мясорубки, кухонные комбайны и др.) Благодаря большой частоте вращения такой двигатель характеризуется высокой удельной мощностью на единицу массы и получается легким, что очень важно для ручного электрифицированного инструмента и других переносных приборов. Достоинством этих двигателей является способность выдерживать кратковременные перегрузки. Работа их не нарушается и при значительных колебаниях напряжения в питающей сети. Сила тока при пуске таких ЭД, как правило, не превышает четырехкратной номинальной величины, поэтому они работают устойчиво в режиме частых пусков и выключений.


Коллекторный ЭД может быть выполнен на низкое напряжение питания и на напряжение осветительной сети. Он может работать на постоянном и переменном токе, изменяя лишь номинальные данные в зависимости от рода тока. Чтобы эти данные получались примерно одинаковыми, обмотку возбуждения ЭД выполняют с дополнительным выводом. При работе от постоянного тока включают все витки этих катушек, а при переменном токе только их часть. Такой двигатель называют универсальным.


Достоинство коллекторного ЭД и в том, что он легко поддается плавному регулированию частоты вращения в самых широких пределах, а также реверсированию (изменению направления вращения). Для этого достаточно только изменить направление тока в обмотке якоря или обмотке возбуждения, поменяв их концы местами.


К сожалению, однофазные коллекторные двигатели не лишены и слабых мест. Они сложны и дороги в изготовлении, требуют квалифицированного обслуживания,


постоянного ухода за щетками и коллекторами, нуждаются в специальных фильтрах для подавления помех радиоприему. Чтобы дать более конкретное представление о коллекторных ЭД, обратимся к двигателям типа КНД, которые стоят во многих ручных электрических машинах (пилах, рубанках, дрелях, лобзиках и пр.) и конструктивно связаны с ними, т. е. являются встроенными.


Они имеют двойную изоляцию, что намного повышает безопасность работы с ними. Мощность их составляет 120–1150 Вт, частота вращения якоря 12000–18000 мин1. Они непосредственно питаются от сети переменного и постоянного тока, не требуя громоздких трансформаторов или преобразователей частоты электрического тока.


Статор двигателя КНД, вмонтированный в пластмассовый корпус, состоит из пакета стальных пластин, в вырезы которого установлены две катушки электромагнитов, проходя через которые электрический ток создает постоянный магнитный поток.


Ротор состоит из стального пакета, в пазы которого уложена обмотка. Выводы ее подсоединены к коллектору. Вал, с посаженным на него ротором, коллектором и вентилятором, вращается на двух шарикоподшипниках. Один из них вмонтирован в гнездо задней стенки корпуса, а другой — в гнездо промежуточного щита.


Вентилятор служит для охлаждения двигателя в процессе работы. Воздух всасывается через входные окна в кожухе, охлаждает обмотку статора и выталкивается через окна промежуточного щита в атмосферу.


Щетки помещены в специальном держателе и прижимаются к коллектору пружинами. Электрический ток подводится к щеткам через два провода, присоединенных к двухполюсному выключателю.


Фильтр подавления радиопомех смонтирован на задней стенке корпуса двигателя и закрыт кожухом. Как уже говорилось, коллекторные двигатели можно применять в приводе легких фрезерных, сверлильных, заточных, токарных станочков и в других самодельных конструкциях. Особенно успешно они работают с устройствами питания, позволяющими регулировать их частоту вращения, а также снижать температуру корпуса.


Наиболее просто это достигается с помощью регулируемого лабораторного автотрансформатора (ЛАТРа). Двигатель можно включать в сеть и через автотрансформатор, позволяющий получать несколько фиксированных напряжений на выходе. К сожалению, такие устройства в продаже отсутствуют. Но при желании автотрансформатор можно сделать самому. Для этого следует подобрать магнитопровод сечением 16–20 см2 (например, ШЛ 32 х 50), намотать обмотку из 400 витков провода ПЭВ2 1,5мм. От 230, 270 и 320 витков сделать отводы. Вывод от начала обмотки подключить к одной клемме, а все остальные — к другим клеммам, расположенным вокруг первой. Замыкая начало обмотки поочередно с другими ее выводами, можно получить ряд напряжений переменного тока, нужного для питания двигателя.


Еще более удобны тиристорные регуляторы напряжения, позволяющие плавно регулировать частоту вращения ЭД. Подобные устройства имеются в продаже. При необходимости такой регулятор можно изготовить самим. Немало их схем опубликовано в журнале «Радио», на страницах стать «Массовой радиобиблиотеки» и других аналогичных изданий. В большинстве своем такие приборы позволяют регулировать напряжение на активной нагрузке в пределах от 0 до 220 В. Мощность нагрузки тоже меняется в широком диапазоне от нескольких Вт до 1,5 кВт и более. С их помощью можно получить постоянный ток и питать им универсальные коллекторные двигатели, а также двигатели постоянного тока. Для этого требуется включить в цепь выпрямителя тиристорного регулятора напряжения электролитический конденсатор соответствующей емкости и нужного рабочего напряжения и присоединить к нему выводы к нагрузке.


За последние годы стали выпускать ручные сверлильные машины (дрели) с малогабаритными электронными блоками управления. Их тоже можно использовать для питания автономных коллекторных двигателей соответствующей мощности. Коллекторные ЭД, встраиваемые в самодельные станки (особенно закрытого типа), желательно интенсивно охлаждать. Очень удобны для этого, например, малогабаритные вентиляторы от персональных компьютеров.


Следует предостеречь неискушенных читателей от использования в большинстве самодельных деревообрабатывающих станков, за исключением лишь фрезерных, быстроходных двигателей без соответствующих редукторов и других регуляторов числа оборотов.


Еще один совет: в тех случаях, когда требуется высвободить для работы обе руки и, вместе с тем, часто включать и выключать станок, в котором используется коллекторный двигатель, нет лучшего помощника, чем педальный выключатель. Состоит он из деревянного брускаоснования, внутри которого укреплен кнопочный переключатель любого типа. Педаль выгибают из листового металла. Крепят ее к основанию двумя шурупами, которые одновременно служат осью вращения. Чтобы педаль могла самостоятельно занимать верхнее положение, ее подпружинивают (помещают под нее кусок поролона, резиновую трубку, упругую металлическую пластинку или цилиндрическую пружинку). От переключателя выводят наружу провода с розеткой и вилкой для подсоединения к электрической сети и двигателю. Надежная конструкция получается также из сетевого одноклавишного выключателя. Его надо привернуть к деревянному основанию, а под клавишу подложить упругий материал.


В различных бытовых приборах широко применяют однофазные асинхронные двигатели. Они конструктивно отличаются от коллекторных и имеют перед ними ощутимые преимущества: не создают помех радиоприему, значительно проще по устройству, а значит, дешевы и надежны, не требуют больших эксплуатационных расходов. Принцип действия такого ЭД заключается в том, что ЭДС в обмотке ротора наводится переменным магнитным полем. Поэтому нет необходимости подводить к нему ток от источника энергии, а следовательно, нет нужды в скользящих контактах в виде щеток и коллектора. Более того, поскольку обмотка ротора не соединена с источником питания, то можно ее не изолировать от самого сердечника ротора. Если забить в его пазы медные или алюминиевые стержни, то ток пойдет по ним, а не по стальным листам, из которых набран сердечник, так как они имеют значительно меньшее электрическое сопротивление.


Однако при прямом включении в сеть такой двигатель не будет вращаться изза отсутствия в нем вращающегося магнитного поля. Поэтому были разработаны многочисленные типы самопускающихся ЭД.


Наибольшее распространение получили однофазные асинхронные двигатели с пусковыми обмотками. Эти обмотки не сосредоточены в виде катушек, как у двигателей постоянного тока, а равномерно распределены в пазах статора. Рабочая обмотка остается включенной в сеть на все время работы ЭД, а пусковая включается только на время трогания ротора с места и отключается, когда двигатель наберет нужное количество оборотов. В цепи пусковой обмотки стоит пусковой элемент, чаще всего в виде активного сопротивления или конденсатора. Двигатель можно легко реверсировать, меняя местами выводные концы рабочей или пусковой обмотки.


Имеются двигатели, у которых пусковое сопротивление заключено в самой пусковой обмотке. К ним принадлежат однофазные ЭД серии АОЛБ, имеющие удовлетворительные пусковые и рабочие характеристики.


Более высокими пусковыми свойствами обладают ЭД с пусковыми конденсаторами. К ним, с частности, относятся двигатели серии ДОЛГ. В ЭД с пусковой обмоткой после ее отключения 1/3 пазов статора остаются неиспользованными, поэтому он имеет пониженную полезную мощность. Чтобы увеличить ее, стали применять двигатели, у которых пусковая обмотка все время остается включенной в сеть через конденсатор. Такой ЭД называют конденсаторным, а его пусковую обмотку — вспомогательной. Этот двигатель имеет немало положительных рабочих свойств: большую мощность на валу, высокий КПД и повышенный коэффициент мощности. Но, к сожалению, у него довольно низкие пусковые характеристики. Чтобы улучшить их, стали на время пуска ЭД включать параллельно рабочему конденсатору еще дополнительный так называемый пусковой. Такому двигателю было присвоено обозначение АОЛД.


Позже стали выпускать конденсаторные ЭД серии ABE, имеющие лучшие рабочие характеристики по сравнению со своими предшественниками.





В настоящее время выпускают однофазные конденсаторные двигатели повышенной мощности, доходящей до 1,3 кВт. Их, в частности, широко применяют в бытовых деревообрабатывающих станках, выпускаемых промышленностью.


Многие двигатели, применяемые в электрических приборах бытового назначения, успешно можно использовать для силового привода различных самодельных станков. Как правило, их следует включать в сеть с той же пусковой и защитной аппаратурой, с которой они были смонтированы в бытовых машинах.


Чтобы дать читателям представление об электрооборудовании современного настольного деревообрабатывающего станка, в котором применен конденсаторный двигатель, приведем его электрическую принципиальную схему (рис. 62).


От перегрузок двигатель защищен тепловым реле КК1, которое разрывает пусковую сеть пускателя КМ1. Повторный пуск возможен только через 15–20 с, т. е. после возвращения элементов тепловой защиты реле КК1 в исходное положение. Увеличение пускового момента при пуске ЭД происходит за счет подключения С, параллельно С2. Частые пуски его недопустимы, так как он будет отключаться тепловым реле. В электрической схеме предусмотрена нулевая защита, которая осуществляется размыканием блокконтактов пускателя КМ1 при исчезновении напряжения в цепи самопитания магнитного пускателя и в цепи пусковой обмотки двигателя.


До сих пор мы вели речь об однофазных электродвигателях. Это и естественно, поскольку однофазный ток получил в нашей стране широчайшее распространение у индивидуальных потребителей. Однако с появлением небольших частных предприятий в городе и на селе, огромного количества садоводческих товариществ положение за последние годы резко изменилось. Для интенсификации труда в подобных хозяйствах возникла необходимость в более мощных электрифицированных машинах и инструментах с трехфазными двигателями, в более разветвленной сети для их питания.


Домашние мастера, конечно, не остаются в стороне от этих перемен, многие из них уже широко пользуются ими. Это объясняется тем, что трехфазные асинхронные короткозамкнутые двигатели обладают многими неоспоримыми достоинствами: простотой, надежностью, компактностью, низкой стоимостью, экономичностью в обслуживании, способностью сохранять практически постоянную частоту вращения при изменении нагрузки. Мощность их по существу ограничивается только параметрами электропроводки. Для них не нужны громоздкие и дорогостоящие конденсаторы. Правда, у таких двигателей имеются свои слабые стороны: малая способность к перегрузкам, снижение надежности при





работе с частыми пусками и остановками и др. И тем не менее эти недостатки не умаляют достоинств трехфазных двигателей.


Как устроен такой двигатель? Его статор состоит из пакета листов электротехнической стали, в пазах которого уложена трехфазная обмотка. Ротор тоже набран из пакета стальных листов. Он имеет обмотку из алюминиевых стержней, проходящих в его пазах и накоротко замыкающихся на концах в кольцах. Отсюда двигатель получил название короткозамкнутого. Ротор насажен на вал вместе с вентилятором. Вал вращается на двух шарикоподшипниках. Обмотки статора имеют шесть концов и могут быть соединены между собой по установленной схеме звездой или треугольником (рис. 63). В первом случае начала или концы всех трех фаз сходятся в одной точке, а оставшиеся три вывода подсоединяются к трехфазной сети. Во втором варианте соединяют конец первой фазы с началом второй, конец второй — с началом третьей, а конец третьей —


с началом первой. К точкам их соединения подключают трехфазную сеть.




4. Особенности гидропривода д/о станков.

Гидроприводом станков называют совокупность устройств (в число которых входит один или несколько объемных гидродвигателей), предназначенную для приведения в движение механизмов и машин посредством рабочей жидкости под давлением. В качестве рабочей жидкости в станочных гидроприводах используется минеральное масло. Гидроприводы широко применяются в современном станкостроении. Они позволяют существенно упростить кинематику станков, снизить их металлоемкость, повысить точность, надежность работы, а также уровень автоматизации. Производство гидроприводов в промышленно развитых странах расширяется. С 1961 по 1978 г. мировое производство гидрооборудования увеличилось на 770 %, а станков — лишь на 170%. Основные направления развития отечественного станочного гидропривода заключаются в улучшении энергетических и эксплуатационных характеристик гидрооборудования, повышении его быстродействия, расширяющемся применении следящего и пропорционального дистанционного управления, обеспечивающих связь современных электронных систем с узлами гидропривода. Широкое использование гидроприводов в станкостроении определяется рядом их существенных преимуществ перед другими типами приводов и прежде всего возможностью получения больших усилий и мощностей при ограниченных размерах силовых исполнительных двигателей. Уже сейчас удельные параметры объемных гидромашин достигают значений 0,5 — 1,8 кг/кВт, а в будущем планируется их дальнейшее уменьшение. Это облегчает компоновку гидроприводов в механизмах. Благодаря малой инерционности подвижных частей гидроприводы имеют высокое быстродействие. Практика показывает, что на гидромотор приходится обычно не более 5% момента инерции приводимого им механизма, а для гидроцилиндра этот показатель может быть еще лучше, поэтому время их разгона и торможения не превышает обычно нескольких сотых долей секунды. Гидравлические приводы обеспечивают при условии хорошей плавности движения широкий диапазон бесступенчатого регулирования скорости исполнительных двигателей. Важное достоинство гидроприводов — возможность работы в динамических режимах при частых включениях, остановках, реверсах движения или изменениях скорости, причем качество переходных процессов может контролироваться и изменяться в нужном направлении. Этим объясняется широкое использование гидравлики в станках с возвратно-поступательным движением рабочего органа (шлифовальные, протяжные, строгальные, долбежные, хонинговальные и др.). Гидропривод позволяет надежно защитить систему от перегрузки, что дает возможность механизмам работать по жестким упорам, при этом обеспечивается точный контроль действующих усилий путем регулирования давления прижима. Это свойство используется в зажимных и фиксирующих механизмах станков, в гидроприводах устранения зазоров, системах уравновешивания и т. п.

Мурашко Я. А. 631 гр. Механизмы прижима и подачи Механизм зажима

При этом вершина крюка внедряется в кряж. Положение зажима на рейке закрепляется поворотом рычага. Рассмотренный механизм зажима применяется на шпалорезном станке цдт-6

143.06kb.

15 12 2014
1 стр.


Механизм подачи топлива (опилок, щепы, древесных гранул и т п.) в топку котла или газогенератора Механизм подачи топлива предназначен для автоматизированной подачи топлива

Механизм подачи топлива (опилок, щепы, древесных гранул и т п.) в топку котла или газогенератора

44.11kb.

17 12 2014
1 стр.


Удк (631. 527+631. 531): 635. 34 Научное обоснование и разработка системы методов селекции и семеноводства капустных культур

Диссертационная работа выполнена в лаборатории селекции и семеноводст­ва капустных культур гну «Всероссийский научно-исследовательский ин­ститут селекции и семеноводства овощных ку

1105.13kb.

25 12 2014
8 стр.


Лабораторная работа №2 «Простейшие грузоподъемные механизмы»

Талью называется грузоподъемный механизм, предназначенный для подъема грузов на высоту до м при выполнении ремонтных, монтажных работ, для обслуживания больших металлорежущих станк

35.67kb.

12 10 2014
1 стр.


Механизм и термодинамика реакций горения

Необходимо выяснить химические механизмы важных для техники процессов горения на базе идентификации промежуточных продуктов, их основных реакций, учета констант скорости и изучения

29.02kb.

06 10 2014
1 стр.


Согласно подпункту 6 пункта 1 статьи 333. 18

Нк рф, государственная пошлина уплачивается до подачи заявлений и (или) документов на совершение таких действий либо до подачи соответствующих документов

20.74kb.

30 09 2014
1 стр.


С. 51-56. Физиологические механизмы биолокации

Показана ведущая роль мозжечка в проявлении биолокационных реакций. Предложены физиологические механизмы, приводящие в движение индикатор (рамку)

78.26kb.

14 12 2014
1 стр.


Обзор Содержание (предварительно) Содержание книги «Редактрование рнк, Гипотетические Механизмы и Контуры Новой Парадигмы»

I. Редактирование рнк и другие внутриклеточные механизмы регуляции экспрессии генов

2042.56kb.

13 10 2014
12 стр.