УДК 004(06) Информатика и процессы управления
Л.Г. НОВИКОВ
Технологический институт (филиал) МИФИ, Лесной, Свердловская обл.
ОПЕРАТОРЫ, ПРОЦЕДУРЫ И АЛГОРИТМЫ ОБРАБОТКИ СИНХРОННЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ СИГНАЛОВ
Рассматриваются логические процедуры, осуществляющие преобразования синхронной последовательности сигналов.
Основные понятия, на которых базируется изложение данного материала: синхронная последовательность сигналов (СПС), оператор логической свёртки синхронных сигналов (СЛС) [1], логическая процедура из сверток, и соответствующий ей вектор (набор) сверток.
Из множества СПС рассматриваются унитарные сигналы, у которых сигнальной величиной является количество нулевых и единичных интервалов. Унитарная СПС последовательность единичных или нулевых интервалов разделенных нулевым или единичным стробом.
Основные операторы СЛС, а также преобразованные в результате действия этих операторов сигналы, представленные в виде многочленов приведены в таблице 1.
Таблица 1
Операторы СЛС
|
Индекс
|
СПС
|
Оператор iδ
|
i =2
|
Х0→Х0+Х1+Х2
|
Оператор jκ
|
j=2
|
Х0+Х1+Х2→ Х2
|
Оператор nφ
|
n=1
|
Х0+Х1+Х2→ Х0
|
Оператор lς
|
l=1
|
Х0+Х1+Х2→ Х3
|
Оператор mμ
|
m=1
|
Х0+Х1+Х2→ Х0+ Х3
|
Где: А – СПС, δ – оператор СДС (свёртка дизъюнктивная синхронная [1]), κ – оператор СКС (свёртка конъюнктивная синхронная), φ – оператор СФС (свёртка «фронт» синхронная), ς – оператор ССС (свёртка «срез» синхронная), μ – оператор СМС (свёртка «маркировка» синхронная); i, j, n, l, m – количество последовательно включенных однотипных операторов свёртки (длина вектора).
Процедуры и соответствующие им преобразовательные схемы векторных сверток подразделяются на три вида: прямая процедура свертки (ППС), дифференциальная (ДПС), компенсационная (КПС).
С помощью ПВС, ДВС и КВС процедур обработки СПС можно выполнить многоуровневую комбинационную структуру, результатом которой является извлечение из потоков СПС необходимой информации по обработке синхронных сигналов – демодуляции, измерения, идентификации, селекции, анализа.
В рамках статьи невозможно провести полную систематизацию всех функций, поэтому ограничимся рассмотрением избранных процедур прямого преобразования.
Процедуры прямой свертки (ППС)
Прямая (каскадная) свертка, - вход последующего оператора соединяется с выходом предыдущего. Процедура прямой свертки (ППС) может быть представлена в виде вектора свёртки V ← {А◦ iδ ◦ jκ ◦ nφ ◦ lς ◦ mμ}.
Любое количество последовательно соединенных операторов может быть представлена в следующем виде:
C(p)=((A(p) ◦ A(p)p) ◦ (A(p) ◦ A(p)p)p) ◦…= A(p)(p0 ◦ p1 ◦ p1 p2◦…,
при A(p)= p0, ◦ = ν, C(p)= p0 ν p1 ν p1 ν p2= p0 ν p1 ν p2,
A(p)= p0, ◦ =
, C(p)= p0
p1
p1
p2= p0
p2.
Таким образом можно доказать справедливость других процедур. На основании этого можно сделать словесное описание операторов свертки, которые можно положить в основу составления алгоритмов для цифровых процессоров сигналов.
С помощью ППС можно проводить дискретную обработку СПС: увеличивать и уменьшать количество сигнальных "0" или "1", выделять фронт и срез СПС, маркировать СПС, нормировать СПС по количеству сигнальных "0" или "1", осуществлять фильтрацию по количеству признаку "0" или "1", производить сдвиг и выполнять другие преобразования [1].
В качестве примеров в таблице 2 приведены условные графические обозначения (УГО) и временные диаграммы фильтрации по количеству нулей: {А◦ iδ ◦ φ}, {А◦ iδ ◦ ς}, {А◦ iδ ◦ μ} (п.1-3) и в таблице 2 – по количеству единиц: {А ◦ jκ◦ φ}, {А ◦ jκ◦ ς}, {А◦ jκ ◦ μ} (п.4-6).
Список литературы
-
Новиков Л.Г. Синхронные унитарные логические функции. // Научная сессия МИФИ-2003. Сб. науч. тр. В 14 т. М.: МИФИ, 2003. Т.12. С.104 – 107.
-
Беляев П.А., Новиков Л.Г. Синхронный унитарный импульсный элемент задержки.// Научная сессия МИФИ-2002. Сб. науч. тр. В 14 т. М.: МИФИ, 2002. Т 13. С. 72 – 73.
ISBN 5-7262-0555-3. НАУЧНАЯ СЕССИЯ МИФИ-2005. Том 12