Перейти на главную страницу
Влажностью воздуха называют содержание водяного пара в атмосфере. Водяной пар является одной из важнейших составных частей земной атмосферы.
Водяной пар непрерывно поступает в атмосферу вследствие испарения воды с поверхности водоемов, почвы, снега, льда и растительного покрова, на что затрачивается в среднем 23 % солнечной радиации, приходящей на земную поверхность.
В атмосфере содержится в среднем 1,29 • 1013 т влаги (водяного пара и жидкой воды), что эквивалентно слою воды 25,5 мм.
Влажность воздуха характеризуется следующими величинами: абсолютной влажностью, парциальным давлением водяного пара, давлением насыщенного пара, относительной влажностью, дефицитом насыщения водяного пара, температурой точки росы и удельной влажностью.
Абсолютная влажность а (г/м3) — количество водяного пара, выраженное в граммах, содержащееся в 1 м3 воздуха.
Парциальное давление (упругость) водяного пара е — фактическое давление водяного пара, находящегося в воздухе, измеряют в миллиметрах ртутного столба (мм рт. ст.), миллибарах (мб) и гектопаскалях (гПа). Упругость водяного пара часто называют абсолютной влажностью. Однако смешивать эти разные понятия нельзя, так как они отражают разные физические величины атмосферного воздуха.
Давление насыщенного водяного пара, или упругость насыщения, Е— максимально возможное значение парциального давления при данной температуре; измеряют в тех же единицах, что и е. Упругость насыщения возрастает с увеличением температуры. Это значит, что при более высокой температуре воздух способен содержать больше водяного пара, чем при более низкой температуре.
Относительная влажность f — это отношение парциального давления водяного пара, содержащегося в воздухе, к давлению насыщенного водяного пара при данной температуре. Выражают ее обычно в процентах с точностью до целых:
f=(e/E)- 100%.
Относительная влажность выражает степень насыщения воздуха водяными парами.
Дефицит насыщения водяного пара (недостаток насыщения) d — разность между упругостью насыщения и фактической упругостью водяного пара:
= E—e.
Дефицит насыщения выражают в тех же единицах и с той же точностью, что и величины е и Е. При увеличении относительной влажности дефицит насыщения уменьшается и при/= 100 % становится равным нулю.
Так как Е зависит от температуры воздуха, а е — от содержания в нем водяного пара, то дефицит насыщения является комплексной величиной, отражающей тепло- и влагосодержание воздуха. Это позволяет шире, чем другие характеристики влажности, использовать дефицит насыщения для оценки условий произрастания сельскохозяйственных растений.
Точка росы td (°С) — температура, при которой водяной пар, содержащийся в воздухе при данном давлении, достигает состояния насыщения относительно химически чистой плоской поверхности воды. При/= 100 % фактическая температура воздуха совпадает с точкой росы. При температуре ниже точки росы начинается конденсация водяных паров с образованием туманов, облаков, а на поверхности земли и предметов образуются роса, иней, изморозь.
Удельная влажность q (г/кг) — количество водяного пара в граммах, содержащееся в 1 кг влажного воздуха:
q = 622 е/Р,
где е — упругость водяного пара, гПа; Р— атмосферное давление, гПа.
Удельную влажность учитывают в зоометеорологических расчетах, например, при определении испарения с поверхности органов дыхания у сельскохозяйственных животных и при определении соответствующих затрат энергии.
ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ВЛАЖНОСТИ ВОЗДУХА В АТМОСФЕРЕ С ВЫСОТОЙ
Наибольшее количество водяного пара содержится в нижних слоях воздуха, непосредственно прилегающих к испаряющей поверхности. В вышележащие слои водяной пар проникает в результате турбулентной диффузии
Проникновению водяного пара в вышележащие слои способствует то обстоятельство, что он легче воздуха в 1,6 раза (плотность водяного пара по отношению к сухому воздуху при 0 "С равна 0,622), поэтому воздух, обогащенный водяным паром, как менее плотный стремится подняться вверх.
Распределение упругости водяного пара по вертикали зависит от изменения давления и температуры с высотой, от процессов конденсации и облакообразования. Поэтому трудно теоретически установить точную закономерность изменения упругости водяного пара с высотой.
Парциальное давление водяного пара с высотой уменьшается в 4...5 раз быстрее, чем атмосферное давление. Уже на высоте 6 км парциальное давление водяного пара в 9... 10 раз меньше, чем на уровне моря. Это объясняется тем, что в приземный слой атмосферы водяной пар поступает непрерывно в результате испарения с деятельной поверхности и его диффузии за счет турбулентности. Кроме того, температура воздуха с высотой понижается, а возможное содержание водяного пара ограничивается температурой, так как понижение ее способствует насыщению пара и его конденсации.
Уменьшение упругости пара с высотой может чередоваться с ее ростом. Например, в слое инверсии упругость пара обычно растет с высотой.
Относительная влажность распределяется по вертикали неравномерно, но с высотой в среднем она уменьшается. В приземном слое атмосферы в летние дни она несколько возрастает с высотой за счет быстрого понижения температуры воздуха, затем начинает убывать вследствие уменьшения поступления водяного пара и снова возрастает до 100 % в слое образования облаков. В слоях инверсии она резко уменьшается с высотой в результате повышения температуры. Особенно неравномерно изменяется относительная влажность до высоты 2...3 км.
Суточный ход упругости водяного пара и абсолютной влажности над океанами, морями и в прибрежных районах суши аналогичен суточному ходу температуры воды и воздуха: минимум перед восходом Солнца и максимум в 14...15 ч. Минимум обусловлен очень слабым испарением (или его отсутствием вообще) в это время суток. Днем по мере увеличения температуры и соответственно испарения влагосодержание в воздухе растет. Таков же суточный ход упругости водяного пара и над материками зимой.
В теплое время года в глубине материков суточный ход влаго-содержания имеет вид двойной волны (рис. 5.1). Первый минимум наступает рано утром вместе с минимумом температуры. После восхода Солнца температура деятельной поверхности повышается, увеличивается скорость испарения, и количество водяного пара в нижнем слое атмосферы быстро растет. Такой рост продолжается до 8...10 ч, пока испарение преобладает над переносом пара снизу в более высокие слои. После 8...10ч возрастает интенсивность турбулентного перемешивания, в связи с чем водяной пар быстро переносится вверх. Этот отток водяного пара уже не успевает компенсироваться испарением, в результате чего влагосодержание и, следовательно, упругость водяного пара в приземном слое уменьшаются и достигают второго минимума в 15...16 ч. В предвечерние часы турбулентность ослабевает, тогда как довольно интенсивное поступление водяного пара в атмосферу путем испарения еще продолжается. Упругость пара и абсолютная влажность в воздухе начинают увеличиваться и в 20...22ч достигают второго максимума. В ночные часы испарение почти прекращается, в результате чего содержание водяного пара уменьшается.
Годовой ход упругости водяного пара и абсолютной влажности совпадают с годовым ходом температуры воздуха как над океаном, так и над сушей. В Северном полушарии максимум влаго-содержания воздуха наблюдается в июле, минимум - в январе. Например, в Санкт-Петербурге средняя месячная упругость пара в июле составляет 14,3 гПа, а в январе — 3,3 гПа.
Суточный ход относительной влажности зависит от упругости пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверхности, а с ней и температуры воздуха относительная влажность уменьшается [см. формулу (5.1)]. В итоге ход ее вблизи земной поверхности оказывается обратным ходу температуры поверхности и воздуха: максимум относительной влажности наступает перед восходом Солнца, а минимум — в 15... 16 ч (рис. 5.2). Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбулентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. Поэтому амплитуда суточных колебаний относительной влажности на материках значительно больше, чем над водными поверхностями.
В годовом ходе относительная влажность воздуха, как правило, также меняется обратно ходу температуры. Например, в Санкт-Петербурге относительная влажность в мае в среднем составляет 65 %, а в декабре — 88 % (рис. 5.3). В районах с муссонным климатом минимум относительной влажности приходится на зиму, а максимум — на лето вследствие летнего переноса на сушу масс влажного морского воздуха: например, во Владивостоке летом /= 89%, зимой/= 68 %.
Ход дефицита насыщения водяного пара параллелен ходу температуры воздуха. В течение суток дефицит бывает наибольшим в 14...15 ч, а наименьшим — перед восходом Солнца. В течение года дефицит насыщения водяного пара имеет максимум в самый жаркий месяц и минимум в самый холодный. В засушливых степных районах России летом в 13 ч ежегодно отмечается дефицит насыщения, превышающий 40 гПа. В Санкт-Петербурге дефицит насыщения водяного пара в июне в среднем составляет 6,7 гПа, а в январе — только 0,5 гПа
Большое влияние растительный покров оказывает и на относительную влажность. Так, в ясные летние дни внутри посевов ржи и пшеницы относительная влажность на 15...30 % больше, чем над открытым местом, а в посевах высокостебельных культур (кукуруза, подсолнечник, конопля) - на 20...30 % больше, чем над оголенной почвой. В посевах наибольшая относительная влажность наблюдается у поверхности почвы, затененной растениями, а наименьшая — в верхнем ярусе листьев (табл. 5.1).. Распределение по вертикали относительной влажности и дефицита насыщения
Дефицит насыщения водяного пара соответственно в посевах значительно меньше, чем над оголенной почвой. Его распределение характеризуется понижением от верхнего яруса листьев к нижнему (см. табл. 5.1).
Ранее отмечалось, что растительный покров значительно влияет на радиационный режим (см. гл. 2), температуру почвы и воздуха (см. гл. 3 и 4), существенно изменяя их по сравнению с открытым местом, т.е. в растительном сообществе формируется свой, особый метеорологический режим — фитоклимат. Насколько сильно он выражен, зависит от вида, габитуса и возраста растений, густоты насаждения, способа посева (посадки).
Влияют на фитоклимат и погодные условия — в малооблачную и ясную погоду фитоклиматические особенности проявляются сильнее.
ЗНАЧЕНИЕ ВЛАЖНОСТИ ВОЗДУХА ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА
Водяной пар, содержащийся в атмосфере, имеет, как отмечалось в главе 2, большое значение в сохранении тепла на земной поверхности, так как он поглощает излучаемое ею тепло. Влажность воздуха относится к числу элементов погоды, имеющих существенное значение и для сельскохозяйственного производства.
Влажность воздуха оказывает большое влияние на растение. Она в значительной степени обусловливает интенсивность транспирации. При высокой температуре и пониженной влажности (/"< 30 %) транспирация резко увеличивается и у растений возникает большой недостаток воды, что отражается на их росте и развитии. Например, отмечается недоразвитие генеративных органов, задерживается цветение.
Низкая влажность в период цветения обусловливает пересыхание пыльцы и, следовательно, неполное оплодотворение, что у зерновых, например, вызывает череззерницу. В период налива зерна чрезмерная сухость воздуха приводит к тому, что зерно получается щуплым, урожай снижается.
Малое влагосодержание воздуха приводит к мелкоплодности плодовых, ягодных культур, винограда, слабой закладке почек под урожай будущего года и, следовательно, снижению урожая.
Влажность воздуха отражается и на качестве урожая. Отмечено, что низкая влажность снижает качество льноволокна, но повышает хлебопекарные качества пшеницы, технические свойства льняного масла, содержание сахара в плодах и т. д.
Особенно неблагоприятно снижение относительной влажности воздуха при недостатке почвенной влаги. Если жаркая и сухая погода длится продолжительное время, то растения могут засохнуть.
Отрицательно сказывается на росте и развитии растений и длительное повышение влагосодержания (/> 80 %). Избыточно высокая влажность воздуха обусловливает крупноклеточное строение ткани растений, что приводит в дальнейшем к полеганию зерновых культур. В период цветения такая влажность воздуха препятствует нормальному опылению растений и снижает урожай, так как меньше раскрываются пыльники, уменьшается лёт насекомых.
Повышенная влажность воздуха задерживает наступление полной спелости зерна, увеличивает содержание влаги в зерне и соломе, что, во-первых, неблагоприятно отражается на работе уборочных машин, а во-вторых, требует дополнительных затрат на просушку зерна (табл. 5.2).
Снижение дефицита насыщения до 3 гПа и более приводит практически к прекращению уборочных работ из-за плохих условий.
В теплое время года повышенная влажность воздуха способствует развитию и распространению ряда грибных заболеваний сельскохозяйственных культур (фитофтороз картофеля и томатов, милдью винограда, белая гниль подсолнечника, различные виды ржавчины зерновых культур и др.). Особенно усиливается влияние этого фактора с увеличением температуры (табл. 5.3).
Влажностью воздуха называют содержание водяного пара в атмосфере. Водяной пар является одной из важнейших составных частей земной атмосферы
24 09 2014
1 стр.
За период наблюдений водяной пар в состоянии перенасыщения наблюдался практически во всем северном полушарии и на высоких широтах в южном полушарии Полученные результаты заставляют
24 09 2014
1 стр.
Что обжигает кожу сильнее: вода или водяной пар при одной и той же температуре и массе? Ответ поясните
14 12 2014
1 стр.
Слесарный мастер Хельмут Гайслер (Helmut Geisler) подчеркивает исключительную мобильность на стройплощадках, поскольку удобный в обращении аппарат для резки и разделения от Fronius
08 10 2014
1 стр.
Настоящие Требования распространяются на проектирование, устройство, изготовление, монтаж, ремонт, эксплуатацию и освидетельствование трубопроводов, транспортирующих водяной пар с
25 12 2014
6 стр.
Арктической стратосфере по данным, полученным при помощи гигрометра. Исследовательская часть работы выполнена на основе экспериментального лабораторного материала и по данным аэрос
12 10 2014
1 стр.
02 10 2014
1 стр.
Действующие лица: Ведущий, Санта-Клаус, Эльф, Дед Мороз, Снегурочка, Баба Яга, Леший, Водяной
09 10 2014
1 стр.