Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1
Волновые явления теплопроводности: Системно-структурный подход. Изд.2.

Шашков А.Г., Бубнов В.А., Яновский С.Ю. 2004. 296 с. 126 руб.


Аннотация

В настоящей книге обсуждены физические аспекты уравнения теплопроводности гиперболического типа, нелинейного параболического уравнения и интегродифференциального уравнения с релаксационными ядрами. Рассмотрены парадоксы классической теории теплопроводности и проведены молекулярно-кинетические обоснования гипотезы о релаксации теплового потока. При рассмотрении математических аспектов гиперболического уравнения теплопроводности предложена систематизация дифференциальных операторов теплопроводности, прослежена связь между линейным гиперболическим и нелинейным параболическим операторами теплопроводности. Книга рассчитана на научных и инженерно-технических работников, специализирующихся в области теплофизики и термодинамики. Может быть полезна аспирантам и студентам теплофизических специальностей.



Оглавление

Предисловие ко второму изданию

Предисловие

Глава 1.


Физические аспекты уравнения теплопроводности гиперболического типа

1.1. О парадоксах классической теории теплопроводности

1.2. Молекулярно-кинетическое обоснование гипотезы о релаксации теплового потока

1.3. Анализ изотермических поверхностей

1.4. Вычисление скорости тепловых волн на основе данных косвенных измерений

1.5. Проявление аналогии между тепловыми и электромагнитными полями

1.6. Релаксация теплового потока в конвективном теплообмене

Глава 2.


Математические аспекты гиперболического уравнения теплопроводности

2.1. Дифференциальные операторы теории теплопроводности

2.2. Классическое решение телеграфного уравнения

2.3. Свзь между линейным гиперболическим и нелинейным параболическим операторами теплопроводности

2.4. Локализация тепла

2.5. Возникновение и затухание тепловых волн

2.6. Решение некорректно поставленных задач теории теплопроводности

Глава 3.


Системно-структурный анализ оператора теплопроводности гиперболического типа при разных краевых условиях

3.1. Теплопроводность в полуограниченном стержне

3.2. Теплопроводность в ограниченном стержне

3.3. Теплопроводность в полупространстве и слое вещества под действием потока лучистой энергии

3.4. Задача теплопроводности для полупространства с подвижной границей

3.5. Теплопроводность в полуограниченных стержнях, приведенных в соприкосновение свободными торцами

3.6. Методы определения времени релаксации теплового потока

Глава 4.


Cистемно-структурный анализ уравнений термоупругости волнового типа

4.1. Дифференциальные и интегральные операторы теории термоупругости

4.2. Термоупругие напряжения в полупространстве

4.3. Температурные напряжения в вязкоупругом полупространстве

4.4. Одномерные температурные напряжения в магнитотермоупругом полупространстве

4.5. Температурные напряжения в упругом стержне, вызванные радиационным нагревом

4.6. Температурные напряжения в бесконечном цилиндрическом стержне, нагреваемом от источников тепла

Глава 5.


Волны в термоупругих средах

5.1. Плоские гармонические термоупругие волны (классическая модель)

5.2. Термоупругие волны в среде с релаксацией теплового потока

5.3. Волны в термоупругой среде с температурно-скоростной

зависимостью

5.4. Гармонические термоупругие волны в средах с тепловой памятью

5.5. Термоупругие волны ускорения в средах с тепловой памятью

Приложение 1. К решению проблемы некорректных задач теории теплопроводности Приложение 2. Эффект локализации тепла и его экспериментальное обоснование Литература



Предисловие ко второму изданию


Впервые книга была издана в 1993 г. издательством "Навука i тэхнiка" (г.Минск). В 1996 г. книга была переведена на китайский язык.

Исследования авторов, составившие содержательную часть книги, начинались в семидесятых годах прошлого столетия, и они неоднозначно воспринимались научной общественностью, так как в теории теплопроводности господствовала парадигма, связанная только с использованием гипотезы Фурье. Из анализа научной литературы прошедшего столетия и настоящего можно заключить, что мало кто из исследователей знаком с исследованиями знаменитого немецкого физика Римана по данному вопросу. Риман впервые поставил под сомнение гипотезу Фурье применительно к процессу распространения тепла в анизотропных телах в работе "Математическое сочинение", в котором содержится попытка дать ответ на вопрос, предложенный знаменитейшей Парижской Академией. Напомним что сущность этого вопроса такова: определить, каково должно быть тепловое состояние произвольного твердого тела, чтобы система изотермических кривых, заданная в определенный момент времени, оставалась системой изотермических кривых в любой момент времени, т.е. чтобы температура точки выражалась в виде функции времени и еще двух вспомогательных переменных. Для ответа на этот вопрос Риман указал метод, позволяющий определить свойства твердого тела, допускающие такое движение тепла в нем, при котором возможна система кривых, постоянно остающихся изотермами. При этом оказалось, что конкретному виду изотермической поверхности соответствует вполне определенный дифференциальный оператор теплопроводности. Среди возможных операторов встречается и линейный оператор теплопроводности параболического типа как частный случай. Однако указанная работа Римана не была оценена современниками, и развитие теории теплопроводности пошло по пути поиска решений параболического оператора при разных начальных и граничных условиях. Этот путь теории теплопроводности оправдывается только тем, что потребности практики требовали изучения температурных полей в телах конечных размеров и различной формы. Но при этом не учитывался один из главных результатов работы Римана, сущность которого состоит в том, что параболическому оператору теплопроводности соответствует только строго определенный класс изотермических поверхностей и за пределы этого класса нельзя выйти расширением начальных и граничных условий. Именно поэтому попытка из параболического оператора получить несвойственные ему температурные поля за счет "навязывания" различных начальных и граничных условий привела к проблеме парадоксов и так называемых некорректных задач. Обсуждение о бесконечной скорости распространения тепла началось в пятидестых годах прошлого столетия. Для его устранения ряд исследователей стали вводить гипотезу о релаксации теплового потока. В рамках этой гипотезы процесс распространения тепла принял волновой характер, характеризующийся конечной скоростью распространения тепловых волн. При этом оказалось, что в ряде задач, рассмотренных с позиций параболического оператора теплопроводности, время релаксации оказалось очень малой величиной. Последнее обстоятельство позволяло считать гипотезу о релаксации теплового потока необоснованной. Однако дело здесь совсем в другом. По-видимому, в теории теплопроводности имеет место такой же дуализм, как в оптике. С одной стороны, процесс распространения тепла осуществляется потоком взаимодействующих частиц (атомов, молекул), с другой стороны - это волновой процесс. В первом случае он описывается параболическим оператором теплопроводности, и такие параметры этого оператора, как теплоемкость и теплопроводность, суть теплофизические константы среды, определяющие количественные характеристики теплопроводности. Во втором случае такими количественными характеристиками являются скорость тепловой волны и ее дисперсия. В данной книге как раз изучаются те условия теплопроводности, при которых процесс теплопроводности имеет волновой характер. Другой путь расширения класса решения линейного параболического оператора теплопроводности это метод квазиобращения. Сущность его состоит в том, что к известному оператору добавляется дополнительный член с малым множителем (например, квадрат лапласиана), далее новый оператор считается близким к исходному и изучаются его решения в зависимости от указанного множителя. К этому же направлению примыкает и метод регуляризации академика А.Н. Тихонова. Возможно, это направление представляет определенный интерес для математиков, но с физической точки зрения произвольная деформация исходного дифференциального оператора, отражающего опытный факт о том, что тепло течет от нагретого тела к холодному, не имеет никакого смысла. Наоборот, при таком подходе можно вступить в противоречие с указанным фактом. Еще один путь расширения класса решений параболического оператора состоит в превращении его в нелинейный оператор за счет предположения зависимости коэффициента температуропроводности от температуры. На этом направлении получены интересные результаты, и прежде всего так называемое явление локализации тепла, сущность которого состоит в том, что температура распространяется только на конечную глубину, а в граничной точке в предельный момент времени температура равна бесконечности, т.е. имеет место неограниченный рост температуры в граничной точке. Слабость указанного направления состоит в том, что для получения такого решения принимается такая зависимость температуропроводности от температуры, которая не имеет места в теплофизических измерениях. В работе автора "Эффект локализации тепла и его экспериментальное обоснование" (ТВТ, т.23, 1990, с.934--939) показано, что для адаптации функциональной зависимости коэффициента теплопроводности к опытным данным необходимо и в этом случае ввести гипотезу о релаксации теплового потока.

Бубнов В.А. доктор технических наук, профессор



Предисловие


Длительное время в научной литературе господствовало мнение о том,что обилие явлений переноса тепла может быть описано в рамках линейного уравнения теплопроводности параболического типа при наличии широкого спектра начальных и граничных условий. Именно поэтому развитие науки о теплообмене в определенный период шло по пути поиска решений указанного уравнения при разных формах тела и экспериментального определения коэффициентов теплопроводности, представляющих собой теплофизические характеристики материала. Однако еще в прошлом столетии Риман при изучении теплового состояния тела показал, что форма изотермических поверхностей определяется не граничными и начальными условиями, а видом дифференциального оператора теплопроводности. Применительно к заданному уравнению для изотермической поверхности им был предложен способ построения дифференциальных операторов теплопроводности, которые содержат производные по времени любого порядка. Указанная работа Римана прошла незамеченной для многих исследователей. И только в 1930--1970 гг. ряд исследователей (среди отечественных А.В. Лыков) стали обращать внимание на некоторые парадоксы в решениях классического уравнения теплопроводности. Один из способов разрешения этих парадоксов осуществляли введением гипотезы о релаксации теплового потока, которая приводила к уравнению теплопроводности гиперболического типа. Устранить парадокс о бесконечной скорости распространения тепла позволяют также нелинейная модель теплопроводности и теория теплопроводности с учетом тепловой памяти материала. Развитие таких модифицированных моделей теплопроводности способствовало обобщению классической теории термоупругости, что позволило устранить парадокс о бесконечной скорости распространения термоупругих возмущений. В монографии проведено исследование математических моделей процессов теплопроводности и термоупругости, учитывающих конечную скорость распространения тепла, а также математизацию операторов теплопроводности и термоупругости. С целью наглядности и лучшего понимания волновых процессов теплопроводности в книге используют системно-структурный подход. При этом процесс переноса тепла в исследуемом материале представлен структурной схемой, состоящей из элементов оператора теплопроводности. Такие схемы по своей сути являются математическими моделями, отражающими пространственно-временное формирование температурных полей и тепловых потоков на границе и внутри исследуемого объекта. Указанный подход позволяет рассматривать достаточно сложные задачи и придавать их решению прикладной инженерный характер.

Волновые явления теплопроводности: Системно-структурный подход. Из

Книга рассчитана на научных и инженерно-технических работников, специализирующихся в области теплофизики и термодинамики. Может быть полезна аспирантам и студентам теплофизических

79.88kb.

07 10 2014
1 стр.


«волновые явления в нелинейных и неоднородных средах»

Темы курсовых работ на кафедре фотоники и физики микроволн для студентов 2-го курса

40.2kb.

02 10 2014
1 стр.


Текст выступления по второму вопросу повестки заседания

«Системно-деятельностный подход к организации образовательного процесса: понятие, дидактические принципы, технологии»

120.86kb.

18 12 2014
1 стр.


Образовательная программа мбоу беглицкой сош начальная школа

В основе реализации основной образовательной программы лежит системно-деятельностный подход

1376.63kb.

15 10 2014
8 стр.


Доклады академии Наук СССР. 1935, т. 1(VI), в. 5 А. Тихонов Теоремы единственности для уравнения теплопроводности

Мы предлагаем здесь исследование вопроса о единственности решений для уравнения теплопроводности

49.22kb.

01 10 2014
1 стр.


Влияние политической стратификации на политический процесс современного общества

Функционально-структурный подход к характеристике политики позволяет увидеть особые грани взаимодействия субъектов по поводу власти, определить формы и модификацию структуры и функ

55.3kb.

11 10 2014
1 стр.


План. Введение. Знаковая реальность. Есть ли у философии свой язык? Отношение языка и реальности Язык творит реальность Проблема существования Объем языка и мышления Структурный подход Тирания языка Аналитическая философия

Напротив, в большинстве случаев философы осознанно отказываются от простых и прямых решений

442.92kb.

29 09 2014
3 стр.


Единая теория поля. Оригинальный подход определяет революцию

Это, в свою очередь, и влияет на буквально все явления поведения материи, пространства, энергии, времени и описывается Единой теорией взаимодействий

1102.56kb.

13 10 2014
5 стр.