Перейти на главную страницу
Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.
Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми. Так, в уравнении у = а + b1х{ + b2 х2 + е предполагается, что факторы х, и х2 независимы друг от друга, т. е. rx1x2 = 0. Тогда можно говорить, что параметр b1 измеряет силу влияния фактора х1 на результат у при неизменном значении фактора х2. Если же rx1x2 =1, то с изменением фактора х1 фактор х2 не может оставаться неизменным. Отсюда b1 и b2 нельзя интерпретировать как показатели раздельного влияния х, и х2 и на у.
Линейная модель множественной регрессии. У=а0+а1х1+ а2х2+…+ аmхm+e
Параметры определяются с помощью методов наименьших квадратов.
Для этого проведем все рассуждения в матричной форме. Введем следующие матричные обозначения:
где У вектор n значений результативного показателя.
Х – матрица n значений m независимых переменных; а матрица параметров
У=Х∙а+ε.
Итак, метод наименьших квадратов требует мин-ии суммы квадратов отклонений исходных модели значений
Далее:
Из матричной алгебры известно, что , тогда:
1 – это есть матрица размерностью 1Х1, т.е. число-скаляр, а скаляр при трансформировании не меняется, поэтому
Согласно условию экстремума S по а =0
;
2ХТY+2aXTX=0
XTY=aXTX
Для погашения а умножим обе части этого уравнения на (ХТХ)-1, тогда
а= (XTХ)-1∙XTY
Решение задачи нахождения матицы, а возможно лишь в том случае, если строки и столбцы матрицы Х линейно независимы.
Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.
Для оценки качества модели множественной регрессии вычисляют к-т монж.корреляции R и детерминации R2.
Чем ближе к 1 значение этих характеристик, тем выше качество модели. В многофакторной регрессии добавление дополнительных объясняющих переменных увеличивает к-т детерминации. Следовательно, к-т детерминации д.б. скорректирован с учетом числа независимых переменных. Скорректированный R2 рассчитывается так:
Для проверки значимости модели регрессии исп-ся F-критерий Фишера: Если расчетное значение с t1=k и t2=(n-k-1) степенями свободы, где k– количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.
К-т эластичности: . Он показывает, на сколько % изменяется зависимая переменная при изменении фактора j на 1%.
Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или, иначе, оценивает тесноту совместного влияния факторов на результат. Независимо от формы связи показатель множ.корреояции м.б. найден как индекс множ.корреляции:
где
– общ.дисперсия результативн.признака,
– остаточная досперсия для уравнения. Границы его измерения: от 0 до 1. Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.
Частные к-ты (индексы) корреляции хар-т тесноту связи между результатом и соотв.фактором при устранении влияния др факторов, включенных в уравнение регрессии.
Прогнозируемое значение переменной у получается при подстановке в уравнение регрессии ожидаемой величины фактора х. данный прогноз называется точечным. Значение независимой переменной хпрогн не должно значительно отличаться от входящих в исследуемую выборку, по которой вычислено уравнение регрессии.
Доверительный интервал прогноза рассчитывается след.образом:
24. К-ты эластичности и бета-к-ты, их смысл.
К-т эластичности: . Он показывает, на сколько % изменяется зависимая переменная при изменении фактора j на 1%.
Бета-к-т:
, где
;
– среднеквадратические отклонения.
Бета-к-т показывает, на какую часть величины среднего квадратического отклонения Sy тзменится зависимая переменная Y с изменением соответствующий независимой переменной Xj на величину среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных переменных.
К-т эластичности: . Он показывает, на сколько % изменяется зависимая переменная при изменении фактора j на 1%.
Бета-к-т:
, где
;
– среднеквадратические отклонения.
Бета-к-т показывает, на какую часть величины среднего квадратического отклонения Sy тзменится зависимая переменная Y с изменением соответствующий независимой переменной Xj на величину среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных переменных.
Чем ближе к 1 значение этих характеристик, тем выше качество модели. В многофакторной регрессии добавление дополнительных объясняющих переменных увеличивает к-т детерминации. Следовательно, к-т детерминации д.б. скорректирован с учетом числа независимых переменных. Скорректированный R2 рассчитывается так:
К-т эластичности: . Он показывает, на сколько % изменяется зависимая переменная при изменении фактора j на 1%.
Бета-к-т:
, где
;
– среднеквадратические отклонения.
Бета-к-т показывает, на какую часть величины среднего квадратического отклонения Sy тзменится зависимая переменная Y с изменением соответствующий независимой переменной Xj на величину среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных переменных.
Проверка выполнения предпосылок регрессионного анализа выполняется на основе анализа остаточной компоненты. Анализ остатков позволяет получить представление, насколько хорошо подобрана сама модель и насколько правильно выбран метод оценки коэффициентов. Согласно общим предположениям регрессионного анализа остатки должны вести себя как независимые (в действительности почти независимые) одинаково распределенные случайные величины. В классических методах регрессионного анализа предполагается также нормальный закон распределения остатков. Исследование остатков полезно начинать с изучения их графика. Он может показать наличие какой-то зависимости, не учтенной в модели. Скажем, при подборе простой линейной зависимости между У и X график остатков может показать необходимость перехода к нелинейной модели (квадратичной, полиномиальной, экспоненциальной) или включения в модель периодических компонент. График остатков хорошо показывает и резко отклоняющиеся от модели наблюдения — выбросы. Подобным аномальным набдениям надо уделять особо пристальное внимание, так как их присутствие может грубо искажать значения оценок. Устранение эффектов выбросов может проводиться либо с помощью удаления их точек из анализируемых данных (эта процедура называется цензурированием), либо с помощью применения методов оценивания параметров, устойчивых к подобным грубым отклонениям.
Независимость остатков проверяется с помощью критерия Дарбина—Уотсона.
Корреляционная зависимость между текущими уровнями некоторой переменной и уровнями этой же переменной, сдвинутыми на несколько шагов, называется автокорреляцией.
Автокорреляция случайной составляющей нарушает одну из предпосылок нормальной линейной модели регрессии.
Наличие (отсутствие) автокорреляции в отклонениях проверяют с помощью критерия Дарбина—Уотсона. Численное значение коэффициента равно
Значение dw статистики близко к величине 2(1 - г(1)), где г(1) — выборочная автокорреляционная функция остатков первого порядка. Таким образом, значение статистики Дарбина—Уотсона распределено в интервале 0—4. Соответственно идеальное значение статистики — 2 (автокорреляция отсутствует). Меньшие значения критерия соответствуют положительной автокорреляции остатков, большие значения — отрицательной. Статистика учитывает только автокорреляцию первого порядка. Оценки, получаемые по критерию, являются не точечными, а интервальными. Верхние (d2) и нижние (d1) критические значения, позволяющие принять или отвергнуть гипотезу об отсутствии автокорреляции, зависят от количества уровней динамического ряда и числа независимых переменных модели. Значения этих границ для уровня значимости α = 0,05 даны в специальных таблицах. При сравнении расчетного значения dw статистики с табличным могут возникнуть такие ситуации: d2 < dw < 2 — ряд остатков не коррелирован; dw < d} — остатки содержат автокорреляцию; d1 < dw < d2 — область неопределенности, когда нет оснований ни принять, ни отвергнуть гипотезу о существовании автокорреляции. Если d превышает 2, то это свидетельствует о наличии отрицательной корреляции. Перед сравнением с табличными значениями dw критерий следует преобразовать по формуле dw' = 4 – dw.
Установив наличие автокорреляции остатков, переходят к улучшению модели. Если же ситуация оказалась неопределенной (d1 < dw< d2 ) применяют другие критерии. В частности, можно воспользоваться первым коэффициентом автокорреляции
Для принятия решения о наличии или отсутствии автокорреляции в исследуемом ряду фактическое значение коэффициента автокорреляции r(1) сопоставляется с табличным (критическим) значением для 5%-ного уровня значимости (вероятности допустить ошибку при принятии нулевой гипотезы о независимости уровней ряда). Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята, а если фактическое значение больше табличного — делают вывод о наличии автокорреляции в ряду динамики.
Обнаружение гетероскедастичности. Для обнаружения гетеро-скедастичности обычно используют три теста, в которых делаются различные предположения о зависимости между дисперсией случайного члена и объясняющей переменной: тест ранговой корреляции Спирмена, тест Голдфельда— Квандта и тест Глейзера.
При малом объеме выборки для оценки гетероскедастичности может использоваться метод Голдфельда— Квандта.
Данный тест используется для проверки такого типа гетероскедастичности, когда дисперсия остатков возрастает пропорционально квадрату фактора. При этом делается предположение, что случайная составляющая распределена нормально.
Чтобы оценить нарушение гомоскедастичности по тесту Голдфельда— Квандта, необходимо выполнить следующие шаги.
Чем больше величина F превышает табличное значение F-критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.
Первая предпосылка МНК– проверка случайного характера остатков. С этой целью строится график зависимости остатков от теоретических значений результативного признака.
Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и МНК оправдан, теоретические значения результативного признака хорошо аппроксимируют фактические значения у. возможны следующие случаи: если остатки зависят от теоретических значений результирующей переменной:
– остатки не случайны (рис. 3,3а)
– остатки не имеют постоянной дисперсии (в)
– остатки носят систематический характер (б), в данном случае отрацательные значения остатков соответствуют низким теоретическим значениям у, а положительные – высоким значениям. В случаях а), б), в) (рис. 3.3) необходимо либо применять другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки е, не будут случайными величинами.
30. Проверка гипотезы о нормальном распределении ряда остатков.
Нормальность распределения ряда остатков означает однородность дисперсий наблюдения. Определяется с помощью R/S-критерия:
Независимость остатков проверяется с помощью критерия Дарбина—Уотсона.
Корреляционная зависимость между текущими уровнями некоторой переменной и уровнями этой же переменной, сдвинутыми на несколько шагов, называется автокорреляцией.
Автокорреляция случайной составляющей нарушает одну из предпосылок нормальной линейной модели регрессии.
Наличие (отсутствие) автокорреляции в отклонениях проверяют с помощью критерия Дарбина—Уотсона. Численное значение коэффициента равно
Значение dw статистики близко к величине 2(1 - г(1)), где г(1) — выборочная автокорреляционная функция остатков первого порядка. Таким образом, значение статистики Дарбина—Уотсона распределено в интервале 0—4. Соответственно идеальное значение статистики — 2 (автокорреляция отсутствует). Меньшие значения критерия соответствуют положительной автокорреляции остатков, большие значения — отрицательной. Статистика учитывает только автокорреляцию первого порядка. Оценки, получаемые по критерию, являются не точечными, а интервальными. Верхние (d2) и нижние (d1) критические значения, позволяющие принять или отвергнуть гипотезу об отсутствии автокорреляции, зависят от количества уровней динамического ряда и числа независимых переменных модели. Значения этих границ для уровня значимости α = 0,05 даны в специальных таблицах. При сравнении расчетного значения dw статистики с табличным могут возникнуть такие ситуации: d2 < dw < 2 — ряд остатков не коррелирован; dw < d} — остатки содержат автокорреляцию; d1 < dw < d2 — область неопределенности, когда нет оснований ни принять, ни отвергнуть гипотезу о существовании автокорреляции. Если d превышает 2, то это свидетельствует о наличии отрицательной корреляции. Перед сравнением с табличными значениями dw критерий следует преобразовать по формуле dw' = 4 – dw.
Установив наличие автокорреляции остатков, переходят к улучшению модели. Если же ситуация оказалась неопределенной (d1 < dw< d2 ) применяют другие критерии. В частности, можно воспользоваться первым коэффициентом автокорреляции
Для принятия решения о наличии или отсутствии автокорреляции в исследуемом ряду фактическое значение коэффициента автокорреляции r(1) сопоставляется с табличным (критическим) значением для 5%-ного уровня значимости (вероятности допустить ошибку при принятии нулевой гипотезы о независимости уровней ряда). Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята, а если фактическое значение больше табличного — делают вывод о наличии автокорреляции в ряду динамики.
Рассматривая зависимости между признаками, необходимо выделить прежде всего две категории зависимости: 1 функциональные и 2 корреляционные
23 09 2014
3 стр.
При этом наибольшие значения завихренности достигаются в вихревых нитях. Исходя из полученных решений, вычислена парная корреляционная функция. Показано, что она подчиняется закону
18 12 2014
6 стр.
Структурно-функциональная организация палеоамигдалы: фундаментальные закономерности и прикладные аспекты
09 09 2014
5 стр.
Фабри-Перо. С "толстым" интерферометром (d~10 см) при идеальной настройке и хороших зеркалах можно получить а~10-5 нм, что будет соответствовать частотному интервалу ~108 c Мож
07 10 2014
1 стр.
Как бороться против зависимости – с помощью лекарств или с помощью психотерапии? В амстердамской Клинике Йеллинек дневное лечение алкогольной зависимости при необходимости сочетает
14 10 2014
1 стр.
Интерлейкинемия в зависимости от гликемического профиля пациентов с артериальной гипертензией
11 09 2014
1 стр.
«человек», в древние времена всегда подразумевали «мозг», так как только мозг обладает свойством изменения генетического или хромосомного набора в зависимости от образа жизни, кото
09 10 2014
1 стр.
Точка 1 движется согласно уравнениям (м), а точка 2 согласно уравнениям (м). Записать зависимости. По характеру зависимости и определить тип движения. Встретятся ли эти точки, если
02 10 2014
1 стр.