Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1
Деление произвольно заданного угла на 3 равновеликие части.

( Трисекция угла )

Е. И. Терёшкин. Россия. г. Пенза
Возьмем прямой угол BAD (чертеж 1) достроим его да квадрата ABCD, примем сторону квадрата за 1. Продолжим стороны BC и DC до величины равной . Поставим точки M и N. Соединим точки M и N с точкой A и наш прямой угол BAD разделен на 3 равновеликие части т.е. .

Чертеж 1.


Далее проведем общую биссектрису углов MCB и NCD. Продолжим линии AB и AD до пересечения с данной биссектрисой. В местах пересечения поставим точки Е и F. АЕ=АМ=AN=AF=2. Из точки А, радиусом АЕ проводим дугу EF, она проходит через точки М и N. Проводим хорды ЕМ и NF. ЕМ=МN=NF.

Теперь, исходя из полученных данных, попробуем разделить прямой угол другим способом. Проведем две прямые, пересекающиеся под прямым углом. В месте пересечения поставим точку С (чертеж 1). Проведем биссектрисы всех четырех прямых углов. Из точки С произвольным радиусом опишем окружность. В местах пересечения окружности с линиями, образующими прямой угол, идущими вверх ставим точки М и N. На горизонтальную биссектрису от точки М влево и от точки N вправо откладываем расстояние МN и ставим точки Е и F. Соединяем точку М с точкой Е, а точку N с точкой F. Из точки Е параллельно МС проводим линию до пересечения с вертикальной биссектрисой прямого угла и ставим точку А. Проводим линию АF, она параллельна линии СN. В месте пересечения линии АЕ с продолжением линии СN ставим точку В. В месте пересечения линии АF с продолжением линии СМ ставим точку D. Из точки N радиусом NF описываем окружность. Продолжаем линию МN до пересечения с окружностью и ставим точку К. Продолжим линию ВN. Из точки F через точку К проводим линию до пересечения с продолжением линии ВN и ставим точку L. Проведем хорду МF. Угол МFК - прямой , потому что он вписанный и опирается на диаметр. Из точки N параллельно FL проводим линию. Эта линия попадает в точку А, потому что полученная фигура АNLF – параллелограмм (NL||АF, а АN||FL). Линия NF является диагональю параллелограмма. Она делит его на два равных треугольника NLF и АNF. Проведем линию МА. из построения.

Треугольник МNF – равнобедренный, значит линия РN делит его на два равных треугольника РМN и РNF. Из этого следует, что .

Рассмотрим треугольники АМN и NLF. AN=FL; MN=NF; , т.к. - внутренние накрест лежащие при параллельных прямых AN и FL и секущей NF. Значит треугольники равны по двум сторонам и углу между ними.

А из этого следует, что и .

Теперь применим этот способ к другим углам. Чертим две пересекающиеся прямые, чтобы верхний и нижний вертикальные углы были тупыми (чертеж 2) и острыми (чертеж 3). В местах пересечения ставим точки С. Из точек С любым радиусом описываем окружность.





Чертеж 2

Чертеж 3
В местах пересечения сторон верхнего тупого угла (чертеж 2) и острого (чертеж 3 с дугой окружности ставим точки М и N. Проводим биссектрисы обоих тупых углов (чертеж 2) и острых (чертеж 3). В обоих чертежах от линии СN вправо откладываем и проводим линию. Под мы проводим линии потому, что в случае с прямым углом линия СF относительно линии СN находится под . Из точек N радиусом MN проводим окружности. В местах пересечения окружностей с линиями, проведенными под к линиям СN ставим точки . Из точек параллельно линиям CN проводим линии до пересечения с биссектрисами нижнего тупого угла (чертеж 2) и острого угла (чертеж 3).

В местах пересечения ставим точки . Из точек , радиусами проводим дуги вправо до пересечения с окружностями радиусом MN и ставим точки Е. Из точек Е параллельно линиям СN проводим линии до пересечения с биссектрисами нижнего тупого угла (чертеж 2) и острого угла (чертеж 3). В местах пересечения ставим точки А. Расстояние и для каждого угла свое. Оно определяется построением. В местах пересечения линий АЕ и продолжений линий МС ставим точки D. Из точек А параллельно МС проводим линии. В местах пересечения линий параллельных МС с продолжениями СN ставим точки В. в обоих чертежах. Проводим хорды MN и NЕ, они равны из построения. Проводим хорды МЕ. Продолжим линии MN до пересечения с окружностями и ставим точки . Из точек Е через точки К проводим линии до пересечения с продолжениями линий ВN и ставим точки L. Угол МЕК – прямой, т.к. он вписанный и опирается на диаметр. Из точек N параллельно ЕL проводим линии. Эти линии попадают в точки А, т.к. полученные фигуры АNLЕ – параллелограммы (NL||АЕ, а АN||ЕL). Линии NЕ являются диагоналями параллелограммов. Эти линии делят параллелограммы на два равных треугольника NLЕ и АNЕ.

Проведем линии МА. из построения. Треугольники МNЕ – равнобедренные. Значит линии NР делят их на два равных треугольника МNР и РNЕ. Из этого следует, что .

Рассмотрим треугольники АМN и NLЕ в обоих чертежах. АN=ЕL; МN= NЕ; , т.к. - внутренние накрест лежащие при параллельных прямых АN и ЕL и секущей NЕ. Значит треугольники равны по двум сторонам и углу между ними. Из этого следует, что .

Если угол меньше , то окружность радиусом MN не касается линии, проведенной под к линии СN. Поэтому угол надо увеличивать в 2,4,8... и т.д. раз, чтобы получился угол больше или равен , а затем разделить его на три равновеликие части. Полученные в результате деления части разделить на 2,4,8... и т.д. частей.



Угол больше развернутого этот способ не делит на три равновеликие части. Но его можно разделить пополам, любую из половинок разделить на три части и взять 2/3, это и будет 1/3 делимого угла.



Деление произвольно заданного угла на 3 равновеликие части.

Возьмем прямой угол bad (чертеж 1) достроим его да квадрата abcd, примем сторону квадрата за Продолжим стороны bc и dc до величины равной. Поставим точки m и N. Соединим точки m и

41.39kb.

15 10 2014
1 стр.


«Математика и золотое сечение»

Золотое сечение (гармоническое деление, деление в крайнем и среднем отношении) – деление отрезка на две части таким образом, что большая его часть является средней пропорциональной

118.54kb.

14 12 2014
1 стр.


«Двугранный угол»

Закрепить понятие двугранного угла, способы построения линейного угла, проверить знания учащихся

44.54kb.

15 10 2014
1 стр.


Межпланетная экспедиция

«Умножение и деление на однозначное число», может использоваться в качестве составной части рефлексивной фазы учебного года

120.48kb.

18 12 2014
1 стр.


Тесты и вопросы к зачету по теме "Размножение и развитие"

Как называется деление, при котором происходит множественное деление ядра и образуется несколько особей

49.52kb.

14 09 2014
1 стр.


Дополнительный материал Бесполое размножение. Шизогония

Множественное деление (шизогония), при котором вслед за рядом повторных делений клеточного ядра происходит деление самой клетки на множество дочерних одноядерных клеток

12.53kb.

29 09 2014
1 стр.


«Деление на однозначное число. Путешествие по карте России. Поверхность нашей Родины»

Продолжить работу по формированию умения выполнять устное и письменное деление четырёх пятизначных чисел на однозначные, *совершенствовать умение решать задачи и сложные уравнения

52.04kb.

23 09 2014
1 стр.


«Размножение организмов»

А прямое деление; б непрямое деление; в вегетативное размножение; г половое размножение

31.4kb.

14 09 2014
1 стр.