Перейти на главную страницу
Даныльченко П.
ГНПП «Геосистема», г. Винница, Украина
Контакт с автором: pavlo@vingeo.com
Четырех-вектор, модуль которого является инвариантным к релятивистским преобразованиям Лоренца, образуют не энергия и импульс, а гамильтониан энтальпии и импульс. На этом основании релятивистскую термодинамическую систему рассматривают как частицу с энергией U*, равной энтальпии этой системы H=U + pv [2], где U и v – соответственно внутренняя энергия и объем одного моля вещества. Аналогичный подход имеется и в классической термодинамике. В ней энтальпию рассматривают как энергию расширенной системы, включающей, например, кроме самого адиабатно расширяющегося газа еще и перемещаемое им в гравитационном поле тело. Если убыль энергии в этих адиабатных процессах (в которых энтропия S газа не изменяется) равна работе по перемещению тела в гравитационном поле, то убыль энтальпии равна работе расширенной системы [3,4]:
При этом, однако, не указывают к каким же все таки изменениям в окружающем мире приводит эта (на самом деле фиктивная) работа расширенной системы и, тем самым, над чем же она все же совершается. И на этот вполне естественный вопрос классическая термодинамика ответить не в состоянии. Разрешить эту проблему может только ОТО. В соответствии с ней энергия расширенной системы равна гравитермодинамической энтальпии Hg=Hvc/c, где c и vc – соответственно собственное значение скорости света (постоянная скорости света) и гравибарическое несобственное значение скорости света (координатная скорость света [2]), функция от которого фактически является потенциалом гравитационного поля2. У идеальной жидкости, подверженной лишь всестороннему давлению и обладающей изохорной теплоемкостью, равной молярной газовой постоянной:
где vcv – вакуумное несобственное значение скорости света, одинаковое3 в пределах всего объема однородной жидкости во всех условно созданных в ней бесконечно малых вакуумных полостях ввиду одинаковости во всем этом объеме энтропии жидкости. Вакуумное несобственное значение скорости света является калибровочным параметром для вещества, который не влияет на скорость протекания физических процессов в его собственном времени.
В отличие от энтальпии гравитермодинамическая энтальпия в адиабатных процессах не изменяется:
, (2)
так как при квазистатическом переходе вещества от одного равновесного состояния к другому равновесному состоянию изменения значения гравитермодинамической энтальпии, вызванные приращениями давления и гравибарического несобственного значения скорости света, всегда компенсируют друг друга . И поэтому то рассмотренная нами расширенная система никакой работы, на самом деле, не совершает. Здесь:
– гравитермодинамическая псевдотемпература, устанавливающая пропорциональность фазового (среднестатистического общесистемного) изменения гравитермодинамической энтальпии фазовому изменению энтропии и, следовательно, не соответствующая определенному гравитермодинамическому фазовому состоянию всего вещества ; Tg(S)= (vc/c)T – гравитермодинамическая температура, устанавливающая пропорциональность квантовых изменений гравитермодинамической энтальпии молекул вещества спонтанным квантовым изменениям их энтропии, не сопровождающимся изменением коллективного гравитермодинамического состояния всего вещества (vc=const); T – термодинамическая температура вещества. Гравитермодинамические температура и псевдотемпература являются, как и гравитермодинамическая энтальпия, функциями лишь от энтропии.
Аналогично и температура Отта (в отличие от температуры Планка) является лишь релятивистской псевдотемпературой, устанавливающей пропорциональность среднестатистического общесистемного изменения гамильтониана молярного объема вещества среднестатистическому общесистемному изменению его энтропии. Она не соответствует определенному усредненному по всему объему значению импульса одного моля вещества а, следовательно, и его определенной мгновенной инерциальной системе отсчета пространственных координат и времени (СО), так как определяется и через изменение импульса вещества вследствие изменения его энтропии.
Независимо от количества интенсивных и экстенсивных параметров, характеризующих вещество, лишь только два любые из них могут быть взаимно независимыми в равновесном состоянии вещества. И лишь только при неявляющемся равновесным движением (ввиду несохранения импульса) свободном падении вещества в гравитационном поле появляется третий независимый параметр – скорость v движения вещества. Поэтому то в равновесном состоянии все термодинамические характеристические функции (потенциалы) и параметры вещества могут быть представлены как функции лишь от энтропии и гравибарического несобственного значения скорости света. Само же это несобственное значение скорости света в классической термодинамике (не учитывающей непосредственного воздействия гравитационного поля на вещество) принципиально может рассматриваться как альтернативный давлению внутренний термодинамический интенсивный параметр вещества. Оба этих интенсивных параметра своими градиентами задают пространственное распределение степени сжатия вещества и при его равновесном состоянии не только компенсируют друг друга (в смысле возможного нарушения равновесия в веществе соответствующими им силами), но и естественно дополняют друг друга в гравитермодинамике. Именно вследствие наличия этой взаимной дополнительности вакуумное несобственное значение скорости света и становится одинаковым в пределах всего этого однородного вещества, несмотря на наличие в нем пространственной неоднородности (неодинаковости) гравитационного потенциала.
Таким образом, при любом естественном или же искусственном изменении термодинамических параметров вещества изменяются и гравитационные потенциалы в нем. Однако задающее гравитационные силы пространственное распределение разницы гравитационных потенциалов при этом не изменяется. Поэтому такое изменение гравибарических несобственных значений скорости света а, следовательно, и однозначно определяемых через них гравитационных потенциалов является калибровочным4 для вещества [7]. Оно приводит к изменению скорости протекания физических процессов в веществе лишь по часам стороннего наблюдателя. В собственном же термодинамическом времени этого вещества скорость протекания в нем физических процессов остается принципиально неизменной (калибровочно-инвариантной) величиной. Это имеет место из-за взаимной определяемости и взаимозависимости темпа течения собственного времени вещества и скорости распространения электромагнитного взаимодействия между его элементарными частицами [7,8].
Какой же тогда физический смысл имеет гравитермодинамическая энтальпия? Ее значение, нормированное по вакуумному несобственному значению скорости света vcv, может рассматриваться как энергия, определяемая в собственном термодинамическом времени вещества. В этом собственном времени скорость протекания физических процессов в веществе не зависит, не только от самих, как экстенсивных, так и интенсивных параметров вещества, но и от скорости изменения этих параметров по часам любого стороннего наблюдателя. Для подверженной лишь всестороннему давлению идеальной жидкости нормированное значение гравитермодинамической энтальпии является лоренц-инвариантным модулем шестиимпульса:
включающего наряду с эквивалентной общерелятивистской массе контравариантной внутренней энергией (контравариантной компонентой тензора энергии-импульса):
и тремя пространственными проекциями импульса:
также внешнюю энергию давления:
и гравибарический импульс:
где:
– скорость гравибарического смещения5 событий вдоль оси сдвигового времени q, обеспечивающего переход от общего для всей жидкости ее астрономического времени t (p=0; ) к собственному квантовому времени конкретного объекта жидкости [7].
P. Danylchenko
PHYLOSOPHICAL ASPECTS OF MUTUAL COMPLEMENTARITY OF GRAVITHERMODYNAMIC PARAMETERS
The interconnection between gravithermodynamic and thermodynamic parameters and characteristic functions, which complete each other, is examined for ideal liquid as an example. The possibility to remove some ambiguities and contradictions at the turn of relativity and thermodynamics is examined.
На примере идеальной жидкости рассмотрена взаимосвязь между дополняющими друг друга гравитермодинамическими и термодинамическими параметрами и характеристическими функциями
18 12 2014
1 стр.
Боговоплощения, а также рассматривает практические и философские аспекты проблемы духовной свободы, метафизику личностных взаимоотношений Божественного и человеческого, пути Богосо
15 10 2014
14 стр.
Россию к крушению. Но, к сожалению, до сих пор корни старообрядчества и причины русского церковного раскола семнадцатого века все еще не полностью вскрыты в исторической литературе
08 10 2014
11 стр.
Напротив, ученые, работающие в данной области, часто демонстрируют резко различные цели и методы, а дискуссии, обычно относимые к сфере философии техники, охватывают множество разн
13 10 2014
6 стр.
На основе компаративного анализа различных подходов к проблеме человека в рамках православной, католической и протестантской традиций рассматриваются философские аспекты религиозно
15 12 2014
1 стр.
Нет даже ясности о чьем сознании собственно идет речь. Для одних научных дисциплин, таких например как психиатрия, научные парадигмы считаются давно сформировавшимися, в то время к
24 09 2014
1 стр.
ГГц. Облучатель в комплекте не поставляется. Обеспечение заданных параметров рефлектора обеспечивается контролем геометрических параметров при изготовлении
02 10 2014
1 стр.
Герберт Спенсер. Опыты научные, политические и философские (Herbert Spenser) один из величайших английских мыслителей
11 10 2014
1 стр.