Содержание:
I. Симметрия в математике:
-
Основные понятия и определения.
-
Осевая симметрия (определения, план построения, примеры)
-
Центральная симметрия (определения, план построения, примеры)
-
Обобщающая таблица (все свойства, особенности)
II. Применения симметрии:
1) в математике
2) в химии
3) в биологии, ботанике и зоологии
4) в искусстве, литературе и архитектуре
-
https://slovari.yandex.ru/dict/bse/article/00071/07200.htm
-
https://www.raduga.edusite.ru/html/simmetr/index.html
-
https://www.reayu.narod.ru/sim/sim.ht
-
https://www.simgeomyz.narod.ru/index.html
1. Основные понятия симметрии и ее виды.
Понятие симметрии п
роходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого организма, а именно человека. И употреблялось скульпторами ещё в 5 веке до н. э. Слово “симметрия” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей”. Его широко используют все без исключения направления современной науки. Об этой закономерности задумывались многие великие люди. Например, Л. Н. Толстой говорил: “Стоя перед черной доской и рисуя на ней мелом разные фигуры, я вдруг был поражен мыслью: почему симметрия понятна глазу? Что такое симметрия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?”. Действительно симметричность приятна глазу. Кто не любовался симметричностью творений природы: листьями, цветами, птицами, животными; или творениями человека: зданиями, техникой, – всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии. Герман Вейль сказал: “Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Герман Вейль – это немецкий математик. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким образом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века. Оно достаточно сложное. Мы же обратимся и еще раз вспомним те определения, которые даны нам в учебнике.
2. Осевая симметрия.
2.1 Основные определения
Определение. Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему. Каждая точка прямой а считается симметричной самой себе.
Определение. Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.

2.2 План построения

И так, для построения симметричной фигуры относительно прямой от каждой точки проводим перпендикуляр к данной прямой и продлеваем его на такое же расстояние, отмечаем полученную точку. Так поступаем с каждой точкой, получаем симметричные вершины новой фигуры. Затем последовательно их соединяем и получаем симметричную фигуру данной относительной оси.
2.3 Примеры фигур, обладающих осевой симметрией.
3. Центральная симметрия
3.1 Основные определения
Определение. Две точки А и А
1 называются симметричными относительно точки О, если О - середина отрезка АА
1. Точка О считается симметричной самой себе.
Определение. Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.
3.2 План построения
Построение треугольника симметричного данному относительно центра О.
Чтобы построить точку, симметричную точке А относительно точки О, достаточно провести прямую ОА (рис. 46) и по другую сторону от точки О отложить отрезок, равный отрезку ОА . Иными словами, точки А и
; В и 
; С и
симметричны относительно некоторой точки О. На рис. 46 построен треугольник, симметричный треугольнику ABC относительно точки О. Эти треугольники равны.
Построение симметричных точек относительно центра.
На рисунке точки М и М1, N и N1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки.
Вообще фигуры, симметричные относительно некоторой точки, равны.
3.3 Примеры
Приведём примеры фигур, обладающие центральной симметрией. Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм.

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диагоналей.
Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии (точка О на рисунке) у прямой их бесконечно много - любая точка прямой является её центром симметрии.
На рисунках показан угол симметричный относительно вершины, отрезок симметричный другому отрезку относительно центра А и четырехугольник симметричный относительно своей вершины М.
Примером фигуры, не имеющей центра симметрии, является треугольник.
4. Итог урока
Обобщим полученные знания. Сегодня на уроке мы познакомились с двумя основными видами симметрии: центральная и осевая. Посмотрим на экран и систематизируем полученные знания.
Обобщающая таблица
|
Осевая симметрия
|
Центральная симметрия
|
Особенность
|
Все точки фигуры должны быть симметричны относительно какой-нибудь прямой.
|
Все точки фигуры должны, симметричны относительно точки, выбранной в качестве центра симметрии.
|
Свойства
| -
1. Симметричные точки лежат на перпендикулярах к прямой.
-
2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки.
-
3. Прямые переходят в прямые, углы в равные углы.
-
4. Сохраняются размеры и формы фигур.
| -
1. Симметричные точки лежат на прямой, проходящей через центр и данную точку фигуры.
-
2. Расстояние от точки до прямой равно расстоянию от прямой до симметричной точки.
3. Сохраняются размеры и формы фигур.
|
Примеры
| -
| -
-
|
II. Применение симметрии
Математика
|
На уроках алгебры мы изучили графики функций y=x и y=x
На рисунках представлены различные картинки, изображенные с помощью ветвей парабол.
(а) Октаэдр,
(б) ромбический додекаэдр, (в) гексагональной октаэдр.
|
|
Русский язык
|
Печатные буквы русского алфавита тоже обладают различными видами симметрий.
В русском языке есть «симметричные» слова - палиндромы, которые можно читать одинаково в двух направлениях.
|
А Д Л М П Т Ф Ш – вертикальная ось
В Е З К С Э Ю - горизонтальная ось
Ж Н О Х - и вертикальная и горизонтальная
Б Г И Й Р У Ц Ч Щ Я – ни какой оси
Радар шалаш Алла Анна
|
Литература
|
Могут быть палиндромичес- кими и предложения. Брюсов написал стихотворение "Голос луны", в котором каждая строка - палиндром.
Посмотрите на четверости -шие А.С.Пушкина «Медный всадник». Если провести линию после второй строчки мы можем заметить элементы осевой симметрии
|
А роза упала на лапу Азора.
Я иду с мечем судия. ( Державин)
«Искать такси»
«Аргентина манит негра»,
«Ценит негра аргентинец»,
«Леша на полке клопа нашел».
В гранит оделася Нева;
Мосты повисли над водами;
Темно-зелеными садами
Ее покрылись острова…
|
Биология
|
Тело человека построено по принципу двусторонней симметрии. Большинство из нас рассматривает мозг как единую структуру, в действительности он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого
Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.
|
Содержание
|
Ботаника
|
Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная - для двудольных Характерной чертой строения растений и их развития является спиральность.
Обратите внимание на побеги листорасположения – это тоже своеобразный вид спирали – винтовая. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения наблюдаются при росте корней и побегов.
|
Характерной чертой строения растений и их развития является спиральность.
Посмотрите на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно — по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.
Содержание
|
Зоология
|
Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звёзды. При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.
|
Осевая симметрия
|
© Сухачева Елена Владимировна, 2008-2009гг.