Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1




© Н. М. Козий, 2008

Свидетельство Украины № 25256

о регистрации авторского права
КРАТКОЕ ДОКАЗАТЕЛЬСТВО

ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
Великая теорема Ферма формулируется следующим образом: диофантово уравнение:

Аn+ Вn = Сn* /1/

где n- целое положительное число, большее двух, не имеет решения в целых положительных числах A, B, С.



ДОКАЗАТЕЛЬСТВО

Из формулировки Великой теоремы Ферма следует: если n – целое положительное число, большее двух, то при условии, что два из трех чисел А, В или С - целые положительные числа, одно из этих чисел не является целым положительным числом.

Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n. Рассмотрим оба случая.
1. Случай первый: показатель степени n - нечетное число.

В этом случае выражение /1/ преобразуется по известным формулам следующим образом:



Аn + Вn = Сn = (A+B)[An-1-An-2·B +An-3·B2- …-A·Bn-2+Bn-1] /2/

______________________________________

*При опровержении этого доказательства надо учитывать, что если теорема Ферма имеет решение в целых положительных числах, то числа А, В и С должны быть взаимно простыми числами.

Полагаем, что A и B – целые положительные числа.

Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель (A+B) имеет одно и тоже значение при любых значениях показателя степени n, следовательно, он является делителем числа С.

Допустим, что число С - целое положительное число. С учетом принятых условий и основной теоремы арифметики должно выполняться условие:



Сn = An + Bn =(A+B)n∙ Dn , /3/

где множитель Dn должен быть целым числом и, следовательно, число D также должно быть целым числом.

Из уравнения /3/ следует:

/4/

Из уравнения /3/ также следует, что число [Cn = An + Bn] при условии, что число С – целое число, должно делиться на число (A+B)n . Однако известно, что:



An + Bn < (A+B)n /5/

Следовательно:



- дробное число, меньшее единицы. /6/

- дробное число.

Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

При нечетных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.

Из анализа уравнения /2/ следует, что при нечетном показателе степени n число:



Сn = Аn + Вn = (A+B)[An-1-An-2·B +An-3·B2- …-A·Bn-2+Bn-1]

состоит из двух определенных алгебраических множителей, при этом при любом значении показателя степени n неизменным остается алгебраический множитель (A+B).

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.


  1. Случай второй: показатель степени n - четное число.

Суть великой теоремы Ферма не изменится, если уравнение /1/ перепишем следующим образом:

An = Cn - Bn /7/

В этом случае уравнение /7/ преобразуется следующим образом:



An = Cn - Bn = (С+B)∙(Cn-1 + Cn-2 · B + Cn-3∙ B2 +…+ C ∙ Bn-2 + Bn-1 ). /8/

Принимаем, что С и В – целые числа.

Из уравнения /8/ следует, что при заданных значениях чисел B и C множитель (С+B) имеет одно и тоже значение при любых значениях показателя степени n, следовательно, он является делителем числа A.

Допустим, что число А – целое число. С учетом принятых условий и основной теоремы арифметики должно выполняться условие:



Аn = Сn - Bn =(С+B)n∙ Dn , /9/

где множитель Dn должен быть целым числом и, следовательно, число D также должно быть целым числом.

Из уравнения /9/ следует:

/10/

Из уравнения /9/ также следует, что число [Аn = Сn - Bn] при условии, что число А – целое число, должно делиться на число (С+B)n . Однако известно, что:



Сn - Bn < (С+B)n /11/

Следовательно:



- дробное число, меньшее единицы. /12/

- дробное число.

Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.

При четных показателях степени n >2 число:

< 1- дробное число, не являющееся рациональной дробью.

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах и при четном показателе степени n >2.

Из изложенного следует общий вывод: уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах А, В и С при условии, что показатель степени n >2.
ДОПОЛНИТЕЛЬНЫЕ ОБОСНОВАНИЯ
В том случае когда показатель степени n – четное число, алгебраическое выражение (Cn - Bn) раскладывается на алгебраические множители:
C2 – B2 = (C-B) ∙ (C+B); /13/

C4 – B4 = (C-B) ∙ (C+B) (C2 + B2); /14/

C6 – B6 = (C-B) ∙ (C+B) · (C2 –CB + B2) ∙ (C2 +CB+ B2); /15/

C8 – B8 = (C-B) ∙ (C+B) ∙ (C2 + B2) ∙ (C4 + B4). /16/

Приведем примеры в числах.


ПРИМЕР 1: В=11; С=35.

C2 – B2 = (22 ∙ 3) ∙ (2 · 23) = 24 · 3 · 23;

C4 – B4 = (22 ∙ 3) ∙ (2 · 23) · (2 · 673) = 24 · 3 · 23 · 673;

C6 – B6 = (22 ∙ 3) ∙ (2 · 23) · (312) ·(3 · 577) =2 ∙ 3 ∙ 23 ∙ 312 ∙ 577;

C8 – B8 = (22 ∙ 3) ∙ (2 · 23) · (2 · 673) ∙ (2 · 75633) = 25 ∙ 3 ∙ 323 ∙673 ∙ 75633.

ПРИМЕР 2: В=16; С=25.

C2 – B2 = (32) ∙ (41) = 32 ∙ 41;

C4 – B4 = (32) ∙ (41) · (881) =32 ∙ 41 · 881;

C6 – B6 = (32) ∙ (41) ∙ (22 ∙ 3) ∙ (13 · 37) · (3 ∙ 7 · 61) = 33 · 7 ∙ 13· 37 ∙ 41 ∙ 61;

C8 – B8 = (32) ∙ (41) ∙ (881) ∙ (17 ·26833) = 32 ∙ 41 ∙ 881 ∙ 17 ·26833.

Из анализа уравнений /13/, /14/, /15/ и /16/ и соответствующих им числовых примеров следует:

- при заданном показателе степени n, если он четное число, число Аn = Сn - Bn раскладывается на вполне определенное количество вполне определенных алгебраических множителей;

- при любом показателе степени n, если он четное число, в алгебраическом выражении (Cn - Bn) всегда имеются множители (C-B) и (C+B);

- каждому алгебраическому множителю соответствует вполне определенный числовой множитель;

- при заданных значениях чисел В и С числовые множители могут быть простыми числами или составными числовыми множителями;

- каждый составной числовой множитель является произведением простых чисел, которые частично или полностью отсутствуют в составе других составных числовых множителей;

- величина простых чисел в составе составных числовых множителей увеличивается с увеличением этих множителей;

- в состав наибольшего составного числового множителя, соответствующего наибольшему алгебраическому множителю, входит наибольшее простое число в степени, меньшей показателя степени n (чаще всего в первой степени).

ВЫВОДЫ: дополнительные обоснования подтверждают заключение о том, что великая теорема Ферма не имеет решения в целых положительных числах.
Автор: Николай Михайлович Козий,

инженер-механик



E-mail: [email protected]

[email protected]

Краткое доказательство великой теоремы ферма

Из формулировки Великой теоремы Ферма следует: если n – целое положительное число, большее двух, то при условии, что два из трех чисел А, в или с целые положительные числа, одно из

81.99kb.

14 12 2014
1 стр.


Файл: ferma-paskal н. М. Козий, 2010 доказательство великой теоремы ферма для нечетных показателей степени

По условию Великой теорема Ферма числа A, B, c взаимно простые. В этом случае одно из чисел а или в четное, а другое нечетное. Пусть a- четное число, а в – нечетное число. Число c

29.05kb.

14 12 2014
1 стр.


Великая теорема ферма: о природе противоречия равенства Ферма

Проснувшись, я решил ее воспроизвести. Здесь, конечно, я не буду приводить полное доказательство теоремы Ферма, а раскрою лишь один момент, из которого станет ясно, откуда проистек

31.14kb.

14 12 2014
1 стр.


Биография Ферма История Большой теоремы Ферма Доказательство леммы 1 (Жермен)

Ферма своими работами способствовал развитию новых отраслей в математике: математического анализа, аналитической геометрии (одновременно с Декартом), теории вероятностей

91.21kb.

14 12 2014
1 стр.


Простое доказательство последней теоремы Ферма методом целевого синтез

Седелев Б. В., выпускник механико-математического факультета мгу им. М. В. Ломоносова 1956 года

87.57kb.

14 12 2014
1 стр.


Завершение проблемы великой теоремы ферма

Санкт-Петербургский Филиал Института земного магнетизма, ионосферы и распространения радиоволн ран

67.06kb.

14 12 2014
1 стр.


Пифагор и доказательства его теоремы

Пифагором. Да и вряд ли нужно препарировать историко-математическим скальпелем красивые древние предания. Сегодня принято считать, что Пифагор дал первое доказательство носящей его

121.73kb.

05 09 2014
1 стр.


Анализ размерностей

В качестве примера приведём доказательство теоремы Пифагора. Рассмотрим прямоугольный треугольник с катетами a и b и гипотенузой c

130.51kb.

18 12 2014
1 стр.