Перейти на главную страницу
Наверняка, каждый человек хоть раз в жизни слышал подобную фразу: «Дважды два равно пяти» или хотя бы: «Два равно трем». На самом деле, таких примеров можно привести очень много, но что все они обозначают? Кто их выдумал? Имеют ли они какое-нибудь логическое объяснение или же это лишь вымысел???
Именно эти вопросы я хочу рассмотреть в своей работе, название которой - математические софизмы. Неслучайно я выбрала именно математические софизмы (хотя бывают и логические, и словесные). Они, как мне кажется, более интересны, имеют четкое логическое объяснение, кроме того, с математическими софизмами мы встречаемся намного чаще, чем с обычными. Само понятие математических софизмов предполагает несколько видов софизмов, ведь в математические можно включить и алгебраические, и геометрические, и простейшие арифметические.
Глава 1. «Понятие софизма. Исторические сведения»
Понятие софизма.
Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Каким бы ни был софизм, он всегда содержит одну или несколько замаскированных ошибок.
Что же такое математический софизм? Математический софизм - удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. История математики полна неожиданных и интересных софизмов, разрешение которых порой служило толчком к новым открытиям. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записи чертежей, за законностью математических операций. Очень часто понимание ошибок в софизме ведет к пониманию математики в целом, помогает развивать логику и навыки правильного мышления. Если нашел ошибку в софизме, значит, ты ее осознал, а осознание ошибки предупреждает от ее повторения в дальнейших математических рассуждениях. Софизмы не приносят пользы, если их не понимать.
Что касается типичных ошибок в софизмах, то они таковы: запрещенные действия, пренебрежение условиями теорем, формул и правил, ошибочный чертеж, опора на ошибочные умозаключения. Нередко, ошибки, допущенные в софизме, настолько умело скрыты, что даже опытный математик не сразу их выявит. Именно в этом и проявляется связь математики и философии в софизмах. На самом деле, софизм- гибрид не только математики и философии, но и логики с риторикой. Основные создатели софизмов – древнегреческие ученые-философы, но тем не менее, они создавали математические софизмы, основываясь на элементарных аксиомах, что еще раз подтверждает связь математики и философии в софизмах. Кроме того, очень важно правильно преподнести софизм, так, чтобы докладчику поверили, а значит, необходимо владеть даром красноречия и убеждения. Группа древнегреческих ученых, начавшая заниматься софизмами как отдельным математическим явлением, назвала себя софистами. Об этом подробнее в следующем разделе.
Экскурс в историю.
Известнейший ученый и философ Сократ по началу был софистом, активно участвовал в спорах и обсуждениях софистов, но вскоре стал критиковать учение софистов и софистику в целом. Такому же примеру последовали и его ученики (Ксенофонт и Платон). Философия Сократа была основана на том, что мудрость приобретается с общением, в процессе беседы. Учение Сократа было устным. Кроме того, Сократа и по сей день считают самым мудрым философом.
Что касается самих софизмов, то, пожалуй, самым популярным на тот момент в Древней Греции был софизм Евбулида : «Что ты не терял, ты имеешь. Рога ты не терял. Значит у тебя рога». Единственная неточность, которую возможно было допустить, то это- двусмысленность высказывания. Данная постановка фразы является нелогичной, но логика возникла намного позже, благодаря Аристотелю, поэтому, если бы фраза строилась так: «Все, что ты не терял. . .», то вывод стал бы логически безупречным.
Подобных софизмов действительно очень много, но хотелось бы больше всего разобрать некоторые математические софизмы, которые наиболее популярны и известны. Об этом и будет следующая глава.
1. «Два неодинаковых натуральных числа равны между собой»
решим систему двух уравнений: х+2у=6, (1)
у=4- х/2 (2)
подстановкой у из 2го ур-я в 1 по-
лучаем х+8-х=6, откуда 8=6
где ошибка???
Уравнение (2) можно записать как х+2у=8, так что исходная система запишется в виде:
Х+2у=8
Перед тем, Как решать систему линейных уравнений, полезно проанализировать, имеет ли система единственное решение, бесконечно много решений или не имеет решений вообще.
2. «Сочетательное и переместительное свойства алгебраической суммы не имеют места»
Рассмотрим сумму бесконечного числа слагаемых, поочередно равных плюс единице и минус единице, т.е.
S=1-1+1-1+1-1+1-1+1-1+…….. ,(1)
И попробуем найти значение этой суммы.
Сначала поступим следующим образом. Будем объединять слагаемые в пары, начиная со второго слагаемого, ставя перед каждой парой «минус», т.е.
S=1-(1-1)-(1-1)-….=1-0-0-…=1.
Теперь переставим каждое положительное слагаемое той же суммы (1) на место отрицательного и обратно, тогда
S=-1+1-1+1-1+1-…=-1+(1-1)+(1-1)+…=-1+0+0+…=-1.
Итак, по-разному переставляя слагаемые суммы(1), мы пришли к различным значениям этой суммы: 1 и –1, в итоге сумма слагаемых изменяется от перегруппировки слагаемых ,а сочетательное и переместительное свойства алгебраической суммы не имеют места.
Из равенства квадратов двух чисел не следует, что сами эти числа равны.
4. «Отрицательное число больше положительного».
Возьмем два положительных числа а и с. Сравним два отношения:
а -а
-с с
Они равны, так как каждое из них равно –(а/с). Можно составить пропорцию:
Но если в пропорции предыдущий член первого отношения больше последующего, то предыдущий член второго отношения также больше своего последующего. В нашем случае а>-с, следовательно, должно быть –а>с, т.е. отрицательное число больше положительного.
Данное свойство пропорции может оказаться неверным, если некоторые члены пропорции отрицательны.
Рассуждения, о том, что из точки на прямой можно опустить два перпендикуляра, опирались на ошибочный чертеж. В действительности полуокружности пересекаются со стороной АС в одной точке, т.е. ВЕ совпадает с ВD. Значит, из одной точки на прямой нельзя опустить два перпендикуляра.
2. « Спичка вдвое длиннее телеграфного столба»
Имеем b - a = c, b = a + c. Перемножаем два эти равенства по частям, находим: b2 - ab = ca + c2. Вычтем из обеих частей bc. Получим: b2- ab - bc = ca + c2 - bc, или b(b - a - c) = - c(b - a - c), откуда
b = - c, но c = b - a, поэтому b = a - b, или a = 2b.
Где ошибка???
В выражении b(b-a-c )= -c(b-a-c) производится деление на (b-a-c), а этого делать нельзя, так как b-a-c=0.Значит, спичка не может быть вдвое длиннее телеграфного столба.
А(В-А)>(В+А)(В-А). (1)
После деления обеих частей неравенства (1) на В-А получим, что
А>В+А (2),
А прибавив к этому неравенству почленно исходное неравенство А>В, имеем 2А>2В+А, откуда
А>2В.
Действительно, согласно условию А>В, поэтому В-А<0.Это означает, что обе части неравенства (1) делятся на отрицательное число. Но согласно правилу преобразования неравенств при делении или умножении неравенства на одно и то же отрицательное число знак неравенства необходимо изменить на противоположный. С учетом сказанного из неравенства (1) вместо неравенства (2) получим неравенство А<В+А, прибавив к которому почленно исходное неравенство В<А, получим просто исходное неравенство А+В<В+2А
Известно, что любые два неравенства можно перемножать почленно, не нарушая при этом равенства, т.е.
Если a=b, c=d, то ac=bd.
Применим это положение к двум очевидным равенствам
1 р.=100 коп, (1)
10р.=10*100коп.(2)
перемножая эти равенства почленно, получим
10 р.=100000 коп. (3)
и, наконец, разделив последнее равенство на 10 получим, что
1 р.=10 000 коп.
таким образом, один рубль не равен ста копейкам.
Действительно, перемножая равенства (1) и (2), мы получим не (3), а следующее равенство
2 2
10 р. =100 000 к . ,
2 2
а не равенство 1р=10 000 к, как это записано в условии софизма. Извлекая квадратный корень из равенства (*), получаем верное равенство 1р.=100 коп.
Перемножив оба этих неравенства почленно, получим неравенство
А*В>В*В, а после его деления на В, что вполне законно, ведь В>0, придем к выводу, что
А>В. (2)
Записав же два других столь же бесспорных неравенства
В>-А и А>-А, (3)
Аналогично предыдущему получим, что В*А>А*А, а разделив на А>0, придем к неравенству
А>В. (4)
Итак, число А, равное числу В, одновременно и больше, и меньше его.
Здесь совершен неравносильный переход от одного неравенства к другому при недопустимом перемножении неравенств.
Проделаем правильные преобразования неравенств.
Запишем неравенство (1) в виде А+В>0, В+В>0.
Левые части этих неравенств положительны, следовательно, умножая почленно оба эти неравенства
(А+В)(В+В)>0, или А>-В,
что представляет собой просто верное неравенство.
Аналогично предыдущему, записывая неравенства (3) в виде
(В+А)>0, А+А>0, получим просто верное неравенство В>-А.
Древнегреческий философ Зенон доказывал, что Ахиллес, один из самых сильных и храбрых героев, осаждавших древнюю Трою, никогда не догонит черепаху, которая, как известно, отличается крайне медленной скоростью передвижения..
Вот примерная схема рассуждений Зенона. Предположим, что Ахиллес и черепаха начинают свое движение одновременно, и Ахиллес стремится догнать черепаху. Примем для определенности, что Ахиллес движется в 10 раз быстрее черепахи, и что их отделяют друг от друга 100 шагов.
Когда Ахиллес пробежит расстояние в 100 шагов, отделяющее его от того места, откуда начала двигаться черепаха, то в этом месте он туже ее не застанет, так как она пройдет вперед расстояние в 10 шагов. Когда Ахиллес минует и эти 10 шагов, то и там черепахи уже не будет, поскольку она успеет перейти на 1 шаг вперед. Достигнув и этого места, Ахиллес опять не найдет там черепахи, потому что она успеет пройти расстояние, равное 1/10 шага, и снова окажется несколько впереди его. Это рассуждение можно продолжать до бесконечности, и придется признать, что быстроногий Ахиллес никогда не догонит медленно ползающую черепаху.
Сначала определим время t, за которое Ахиллес догонит черепаху. Оно легко находится из уравнения a+vt=wt, где а -расстояние между Ахиллесом и черепахой до начала движения, v и w – скорости черепахи и Ахиллеса соответственно. Это время при принятых в софизме условиях (v=1 шаг/с и w=10 шагов/с) равно 11, 111111… сек.
Другими словами, примерно через 11, 1 с. Ахиллес догонит черепаху. Подойдем теперь к утверждениям софизма с точки зрения математики, проследим логику Зенона. Предположим, что Ахиллес должен пройти столько же отрезков, сколько их пройдет черепаха. Если черепаха до момента встречи с Ахиллесом пройдет m отрезков, то Ахиллес должен пройти те же m отрезков плюс еще один отрезок, который разделял их до начала движения. Следовательно, мы приходим к равенству m=m+1, что невозможно. Отсюда следует, что Ахиллес никогда не догонит черепаху!!!
Итак, путь, пройденный Ахиллесом, с одной стороны, состоит из бесконечной последовательности отрезков, которые принимают бесконечный ряд значений, а с другой стороны, эта бесконечная последовательность, очевидно не имеющая конца, все же завершилась, и завершилась она своим пределом, равном сумме геометрической прогрессии.
Трудности, которые возникают при оперировании понятиями непрерывного и бесконечного и столь мастерски вскрываются парадоксами и софизмами Зенона, до сих пор не преодолены, а разрешение противоречий, содержащихся в них, послужило более глубокому осмыслению основ математики.
Заключение.
О математических софизмах можно говорить бесконечно много, как и о математике в целом. Изо дня в день рождаются новые парадоксы, некоторые из них останутся в истории, а некоторые просуществуют один день. Софизмы есть смесь философии и математики, которая не только помогает развивать логику и искать ошибку в рассуждениях. Буквально вспомнив, кто же такие были софисты, можно понять, что основной задачей было постижение философии. Но тем не менее, в нашем современном мире, если и находятся люди, которым интересны софизмы, в особенности математические, то они изучают их как явление только со стороны математики, чтобы улучшить навыки правильности и логичности рассуждений.
Понять софизм как таковой (решить его и найти ошибку) получается не сразу. Требуются определенный навык и смекалка. Что касается меня, то некоторые софизмы приходилось разбирать по нескольку раз, чтобы действительно в них разобраться, некоторые же наоборот, казались очень простыми. Развитая логика мышления поможет не только в решении каких-нибудь математических задач, но еще может пригодиться в жизни.
Исторические сведения о софистике и софистах помогли мне разобраться, откуда же все-таки началась история софизмов. По началу, я думала, что софизмы бывают исключительно математические. Причем в виде конкретных задач, но, начав исследование в этой области, я поняла, что софистика-это целая наука, а именно математические софизмы - это лишь часть одного большого течения.
11 10 2014
1 стр.
В любой области математики — от простой арифметики до современной теоретико-множественной топологии — есть свои псевдодоказательства
24 09 2014
1 стр.
Целью нашего проекта является всесторонний анализ понятия «софизма», установление связи между софистикой и математикой, влияние софизмов на развитие логики
11 10 2014
1 стр.
Двумерные математические модели переноса бинарного электролита в мембранных системах
16 12 2014
1 стр.
10 10 2014
1 стр.
13 10 2014
2 стр.
18 12 2014
1 стр.
Математические основы, модели и методы управления социально-экономическими системами
01 10 2014
1 стр.