Перейти на главную страницу
Прикладная математика отличается от чистой тем, что она применяется непосредственно на практике. Более строго, прикладная математика — область математики, рассматривающая применение математического знания в других сферах деятельности.
Андрей Николаевич Колмогоров — один из основоположников современной теории вероятностей, им получены фундаментальные результаты в топологии, математической логике, теории турбулентности, теории сложности алгоритмов и ряде других областей математики и её приложений.
Использовалась десятичная иероглифическая система счисления. Каждая десятичная единица более высокого разряда обозначалась своим иероглифом, очень похожа на римскую систему счисления.
На этой системе египтянами построена довольно сложная арифметика. Умножение здесь сводится к повторным сложениям. Замечательной чертой является действие с дробями. Все дроби сводятся к суммам основных дробей 1/n и некоторых индивидуальных, например, 2/3, 3/4. Это делается на основе таблиц разложения дробей вида 2/n (n = 3-101). Египтяне знали площадь треугольника - половина произведения основания на высоту, объем параллелепипеда, кругового цилиндра. Замечательный результат - объем усеченной пирамиды с квадратным основанием где а, b - длины сторон квадратов, h - высота. Площади круга диаметра d вычислялась как
что дает для p значение
3.1605.
Математика в древнем Вавилоне была на более высоком уровне чем в Египте. Вавилоняне имели более прогрессивную позиционную 60-ричную систему счисления. Такая система имеет огромное преимущество при вычислениях по сравнению с римскими цифрами. Однако эта система не имела нуля, что приводило к некоторой неопределенности, и точное истолкование записи надо было извлекать из контекста.
Шестидесятиричная система и позиционность оказались достоянием человечества. Современное деление часа на 60 минут и 3600 секунд восходит к Вавилону. Это же относится к делению окружности на 3600 , градуса на 60 минут, минуты на 60 секунд. Что касается авторства позиционности системы, то здесь не все ясно. Возможно это изобретение Индии, где десятичная позиционная система с нулем появилась около 500 года до н.э.
В Вавилоне владели техникой решения квадратных уравнений, тогда как египтянам были известны лишь линейные. Решали также задачи, сводящиеся к кубическим и биквадратным уравнениям. Такие задачи они формулировали только для определенных числовых значений коэффициентов. Ван дер Варден в книге “Пробуждающаяся наука” указывает, что вавилоняне умели решать следующие 10 видов уравнений и систем:
Уравнения
,
Системы
Кроме того они умели находить сумму арифметической прогрессии и суммы других видов, например,
Геометрические знания были выше египетских, уже встречаются некоторые тригонометрические соотношения. Площадь круга вычислялась по формуле S = , где c - длина окружности; отсюда p = 3. Есть основания полагать, что в Вавилоне была известна теорема Пифагора.
Характерной чертой греческой математики в отличие от Египта и стран Востока является стремление доказывать математические факты. Родоначальником греческой математики считается Фалес (625 - 547 г. до н.э.). Ему приписывают доказательства ряда математических результатов : диаметр делит круг пополам, углы при основании равнобедренного треугольника равны и многое другое. Греки сумели в течение одного - двух столетий овладеть математическим наследием предшественников, которое накапливалось тысячелетиями, и по-новому его осмыслить.
В математике этого периода практические задачи, связанные с вычислениями, геометрическими измерениями и построениями, продолжали играть большую роль. Эти задачи постепенно выделились в отдельную область математики, названную логистикой. Она включала операции с целыми числами и дробями, решение задач, сводящихся к уравнениям 1-й и 2-й степени, практические задачи архитектуры, земледелия и т.п.
В то же время уже в школе Пифагора (580 - 500 г. до н.э.) начинается процесс накопления и систематизации абстрактных математических фактов. Пифагорийцы не признавали прикладного характера математики. Будучи аристократами они считали, что решение практических задач - удел лишь низших сословий.
Пифагорийцами была построена значительная часть планиметрии прямолинейных фигур, доказана теорема Пифагора ( она получила имя основателя греческой школы, хотя была известна значительно раньше в Вавилоне). Был найден способ отыскания целых пифагоровых чисел, удовлетворяющих соотношению : для нечетных n они имеют вид
.
Для четных n пифагоровы числа были получены позже в Академии знаменитого греческого философа Платона (427 - 347 г до н.э.) и равны
Из арифметики была выделена в отдельную область теория чисел - все, что относится к общим свойствам операций с натуральными числами. Целые числа представлялись основополагающими универсальными объектами, к операциям с которыми должны сводится и все математические построения, и вообще все многообразие явлений действительности. “Все есть число и все из чисел” - руководящий принцип пифагорийцев. Из этого принципа следовало, что отношения между любыми количествами должны быть отношениями целых чисел (т.е. рациональными числами в современной терминологии).
Этому обожествлению целых чисел был нанесен сокрушительный удар самими же пифагорийцами. Оказалось, что отношение диагонали квадрата к его стороне ( равное ) не является рациональным числом, т.е. отношением целых чисел. Этот факт был доказан путем сведения к противоречию. Действительно, пусть
где p и q - взаимно простые. Тогда
и p - четное, а, значит, q - нечетное. Но из того, что
следует
, т.е.
, а следовательно и q четные.
Это был, по сути, первый кризис в математике. В то время еще не было предпосылок разрешить его, расширив понятие числа вводом иррациональностей. Осознав, что совокупность геометрических величин более полна, чем множество рациональных чисел, греки создали исчисление в геометрической форме. Новое исчисление получило в литературе название геометрической алгебры.
В греческой математике возникла еще одна трудность, связанная с понятием бесконечности. Математики понимали, что за целым числом N следует целое число N+1, затем N+2 и так далее до бесконечности. К бесконечным процессам приводил и метод исчерпывания (предела), о котором речь будет идти ниже. Эта концепция была важным достижением, однако противоречила всем имеющимся тогда данным физики и философским воззрениям о конечности Вселенной. Она открывала новые широкие возможности в математике, но приводила к парадоксам. Смысл понятия бесконечности и до сих пор не раскрыт до конца, однако в течение веков на многие вопросы, возникающие в связи с этим понятием получен ответ.
Еще одна трудность связана с тем, что греки не знали отрицательных чисел. Они имели дело с отрицательными числами только в терминах алгебраических выражений для площадей квадратов и прямоугольников, например, . Отрицательные числа впервые использовались, по видимому, китайцами, однако окончательно вошли в математику после работ Кардано в 1545 году.
Геометрическими построениями можно интерпретировать алгебраические формулы. Например, рис. 2.2 выражает тождество .
Метод приложения площадей использовался для решения задач, сводящихся к квадратным уравнениям. Примерами таких задач являются: определение сторон правильных вписанных многоугольников; “золотое сечение” отрезка, т.е. деление отрезка a на части x и a-x, удовлетворяющих соотношению a/x=x/(a-x); построение среднего арифметического а/x=x/b и др.
Решение этого класса задач проводилось с помощью единого канонического метода, имеющего несколько разновидностей в зависимости от вида квадратного уравнения.
- задача о трисекции угла, т.е. разделение произвольного угла на три равных части;
- задача об удвоении куба, т.е. определение ребра куба, объем которого вдвое больше объема заданного куба;
- задача о квадратуре круга, т.е. нахождение такого квадрата, площадь которого была бы равна площади заданного круга.
Попытки решить эти задачи методами геометрической алгебры приводили к тому, что полученные решения оказывались или неверными или приближенными. Последние безусловно имеют ценность, но не являются точными решениями. Эти задачи стимулировали развитие математики. С ними связано развитие конических сечений, открыты некоторые кривые 3-го и 4-го порядков, кривая, получившая название квадратрисы.
Таким образом, в “Началах” систематизированы и строго изложены результаты, полученные математикой к III веку до н.э., включающие три важнейших открытия математики древности: теорию отношений Евдокса, теорию иррациональных Теэтета и теорию пяти правильных тел.
Остановимся специально на аксиоматике “Начал”. Греки уже владели несколькими явными и несомненными истинами окружающего мира, такими как :две точки определяют прямую, прямую можно продолжить неограниченно в обе стороны, прямые углы равны, если к равным прибавить равные, получим снова равные. Эти аксиомы вошли в число аксиом и постулатов “Начал”, из которых Евклид вывел около 500 теорем. Особое место занимает аксиома о параллельных, согласно которой через точку вне заданной прямой можно провести одну и только одну прямую, параллельную ей. Эта аксиома не поддается проверке опытом. Многие ученые делали попытку доказать ее как теорему, исходя из остальных девяти аксиом Евклида, но безуспешно. Лишь в XIX веке это утверждение было окончательно признано аксиомой.
Математика Востока, в отличие от греческой, всегда носила более практичный характер. Соответственно наибольшее значение имели вычислительные и измерительные аспекты. Основными областями применения математики были торговля, ремесло, строительство, география, астрономия и астрология, механика, оптика.
Аба́к — счётная доска, применявшаяся для арифметических вычислений приблизительно с IV века до н. э. в Древней Греции, Древнем Риме.
Реконструкция римского абака
Доска абака была разделена линиями на полосы, счёт осуществлялся с помощью размещённых на полосах камней или других подобных предметов.
Впервые появился, вероятно, в Древнем Вавилоне ок. 3 тыс. до н. э. Первоначально представлял собой доску, разграфлённую на полосы или со сделанными углублениями. Счётные марки (камешки, косточки) передвигались по линиям или углублениям. В 5 в. до н. э. в Египте вместо линий и углублений стали использовать палочки и проволоку с нанизанными камешками.
В Европе абак применялся до XVIII века. В Средние века сторонники производства арифметических вычислений исключительно при помощи абака — абацисты — в течение нескольких столетий вели ожесточённую борьбу с алгоритмиками — приверженцами возникших тогда методов алгоритмизации арифметических действий.
В России счёты (аналог абака) появились в XVI веке и применяются до сих пор, хотя в последнее время их использование ограничено широким распространением калькуляторов.
Ацтекские счёты возникли приблизительно в X веке и изготавливались из зёрен кукурузы, нанизанных на струны, установленные в деревянной раме.
В странах Востока распространены китайский аналог абака — суаньпань и японский — соробан.
Важным усовершенствованием техники вычислений было изобретение логарифмов, которые позволили свести к сложению не только умножение и деление, но и такие громоздкие операции как возведение в степень и извлечение корня. Логарифмам предшествовала идея сравнения геометрической и арифметической прогрессий, также с целью сведения операций к более простым. Действительно, возьмем две последовательности
а) ..., q-1, q0, q1, q2, ...
б) ..., -1, 0, 1, 2, ...
Умножению членов последовательности а) соответствует сложение соответствующих членов последовательности б). На современном математическом языке эти последовательности задают функцию или
. Но в те времена еще не знали показательной и логарифмической функции; они были введены лишь в XVIII веке Эйлером. Очевидно, если
, то
Первые логарифмические таблицы были составлены швейцарцем Бюрги. Он работал в пражской астрономической обсерватории вместе с Кеплером, помогая ему в наблюдениях и вычислениях. Толчком для исследований Бюрги послужили опубликованные Стевином в конце XVI века таблицы сложных процентов. Отсюда появилось у Бюрги основание логарифмов . Странно, что он не воспользовался при составлении таблиц десятичными дробями, которые применял Стевин, что усложнило его работу. Над таблицами логарифмов Бюрги трудился 8 лет, с 1603 по 1611 годы. Он их долго не публиковал и сделал это только в 1620 году благодаря настойчивым просьбам Кеплера. Это стоило Бюрги приоритета в изобретении логарифмов.
Изобретателем логарифмов считается шотландский математик барон Непер, опубликовавший в 1614 году в Англии книгу “Описание удивительных таблиц логарифмов”. Неперу принадлежит и сам термин “логарифм”. Книга Непера содержала 8-значные таблицы логарифмов тригонометрических функций для значений аргумента от до
через
. Непер исходил из двух последовательностей, из которых одна возрастает в арифметической прогрессии, а другая убывает в геометрической, что соответствует формуле
т.е. неперовские логарифмы имеют основание 1/е. Коэффициент введен с целью оперировать при составлении тригонометрических таблиц с целыми числами, так как десятичные дроби только еще входили в практику. Следовательно,
и
. Очевидно, когда
, то получаем
а не
. Это усложняло пользование логарифмами и не удовлетворяло Непера. Непер и английский математик Бригг пришли к идее десятичной системы логарифмов, основанной на последовательностях а), б) при q=10. После смерти Непера Бригг в 1624 году опубликовал книгу “Логарифмическая арифметика”, содержавшую десятичные “бригговы” логарифмы с четырнадцатью знаками для целых чисел от 1 до 20.000 и от 90.000 до 100.000. Пробел был заполнен в 1627 году, когда голландец Влакк издал 10-значные таблицы логарифмов целых чисел от 1 до 10
. В 1620 году англичанин Спейдель разработал таблицы натуральных логарифмов.
Таблицы логарифмов быстро распространялись по всему миру и сделались незаменимым средством вычислений.
На шкале в логарифмическом масштабе длина отрезка шкалы пропорциональна логарифму отношения величин отмеченных на концах этого отрезка (в то время как на шкале в линейном масштабе длина отрезка пропорциональна разности величин на его концах).
Прикладная математика отличается от чистой тем, что она применяется непосредственно на практике. Более строго, прикладная математика — область математики, рассматривающая применени
18 12 2014
6 стр.
Математика и естествознание. Математика как язык науки. Математика как система моделей. Математика и техника. Различие взглядов на математику философов и ученых
18 12 2014
1 стр.
Предмет, метод и функции математики. Математика как феномен культуры. Математика и философия. Математика и искусство
26 09 2014
1 стр.
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов специальности 230401. 65 Прикладная математика
17 12 2014
1 стр.
14 12 2014
1 стр.
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления 010500. 62 «Прикладная математика и информатика»
13 10 2014
1 стр.
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления подготовки для специальности 010400. 62 «Прикладная математика и
25 12 2014
1 стр.
Предмет и основные этапы развития философии науки. Презентизм и антикваризм в философии науки
18 12 2014
1 стр.