Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1страница 2страница 3страница 4

Рис. .Строение биологических мембран

1 — молекула липида;

2 — липидный бислой;

3 — интегральные белки;

4 — периферические белки;

5 — полуинтегральные белки;

6 — гликокаликс;

7 — субмембранный слой;

8 — актиновые микрофиламенты;

9 — микротрубочки;

10 — промежуточные филаменты;

11 —углеводные молекулы гликопротеинов и гликолипидов.

Молекулы белков, как и липидов, обладают амфипатрическими свойствами: у них есть гидрофобные участки, взаимодействующие с гидрофобными хвостами липидных молекул внутри бислоя, и гидрофильные участки, обращенные к водной среде и образующие с молекулами воды водородные связи.

Позже появились сведения о том, что часть белков, входящих в состав биологических мембран, образует в липидном бислое жесткий каркас, который сохраняется после вымывания липидов жирорастворяющими веществами. Этот вид модели получил название белково-кристаллической.

Описанные три вида моделей биологических мембран не исключают друг друга. Они могут встречаться в разных мембранах или же в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.


Особенности структурной организации наружной клеточной мембраны (плазмолеммы)

Плазматическая мембрана животных клеток покрыта снаружи (т.е. на стороне, не контактирующей с цитоплазмой) слоем олигосахаридных цепей, ковалентно присоединенных к мембранным белкам (гликопотеины) и в меньшей степени к липидам (гликолипиды). Это углеводное покрытие мембраны называется гликокалексом. Назначение гликокалекса пока не очень ясно; есть предположение, что эта структура принимает участие в процессах межклеточного узнавания.

У растительных клеток поверх наружной клеточной мембраны располагается плотная целлюлозная оболочка с порами, через которые осуществляется связь между соседними клетками посредством цитоплазматических мостиков.

Свойства биологических мембран

1. Способность к самосборке после разрушающих воздействий. Это свойство определяется физико-химическими особенностями фосфолипидных молекул, которые в водном растворе собираются вместе так, что гидрофильные концы молекул разворачиваются наружу, а гидрофобные - внутрь. В уже готовые фосфолипидные слои могут встраиваться белки. Способность к самосборке имеет важное значение на клеточном уровне.

2. Полупроницаемость (избирательность в пропускании ионов и молекул). Обеспечивает поддержание постоянства ионного и молекулярного состава в клетке.

3. Текучесть мембран. Мембраны не являются жесткими структурами, они постоянно флюктуируют за счет вращательных и колебательных движений молекул липидов и белков. Это обеспечивает большую скорость протекания ферментативных и других химических процессов в мембранах.

4. Фрагменты мембран не имеют свободных концов, так как замыкаются в пузырьки.

Функции наружной клеточной мембраны (плазмалеммы)

Основными функциями плазмалеммы являются следующие: 1) барьерная, 2) рецепторная, 3) обменная, 4)транспортная.

1. Барьерная функция. Она выражается в том, что плазмалемма ограничивает содержимое клетки, отделяя его от внешней среды, а внутриклеточные мембраны разделяют цитоплазму на отдельные реакционные отсеки-компартменты.

2. Рецепторная функция. Одной из важнейших функций плазмалеммы является обеспечение коммуникации (связи) клетки с внешней средой посредством присутствующего в мембранах рецепторного аппарата, имеющего белковую или гликопротеиновую природу. Основная функция рецепторных образований плазмалеммы - распознавание внешних сигналов, благодаря которым клетки правильно ориентируются и образуют ткани в процессе дифференцировки. С рецепторной функцией связана деятельность различных регуляторных систем, а также формирование иммунного ответа.



  1. Обменная функция определяется содержанием в биологических мембранах ферментных белков, являющихся биологическими катализаторами. Их активность меняется в зависимости от рН среды, температуры, давления, от концентрации как субстрата, так и самого фермента. Ферменты определяют интенсивность ключевых реакций метаболизма, а также их направленность.

  2. Транспортная функция мембран. Мембрана обеспечивает избирательное проникновение в клетку и из клетки в окружающую среду различных химических веществ. Транспорт веществ необходим для поддержания в клетке соответствующего рН, надлежащей ионной концентрации, что обеспечивает эффективность работы клеточных ферментов. Транспорт поставляет питательные вещества, которые служат источником энергии, а также материалом для образования различных клеточных компонентов. От него зависит выведение из клетки токсических отходов, секреция различных полезных веществ и создание ионных градиентов, необходимых для нервной и мышечной активности, Изменение скорости переноса веществ может приводить к нарушениям биоэнергетических процессов, водно-солевого обмена, возбудимости и других процессов. Коррекция этих изменений лежит в основе действия многих лекарственных препаратов.

Существует два основных способа поступления веществ в клетку и вывода из клетки во внешнюю среду;

  • пассивный транспорт,

  • активный транспорт.

Пассивный транспорт идет по градиенту химической или электрохимической концентрации без затрат энергии АТФ. Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентрации этого вещества по обеим сторонам мембраны (градиент химической концентрации). Если же молекула заряжена, то на ее транспорт влияют как градиент химической концентрации, так и электрический градиент (мембранный потенциал).

Оба градиента вместе составляют электрохимический градиент. Пассивный транспорт веществ может осуществляться двумя способами простой диффузией и облегченной диффузией.



При простой диффузии ионы солей и вода, могут проникать через селективные каналы. Эти каналы образуются за счет некоторых трансмембранных белков, формирующих сквозные транспортные пути, открытые постоянно или только на короткое время. Через селективные каналы проникают различные молекулы, имеющие соответствующие каналам размер и заряд.

Имеется и другой путь простой диффузии - это диффузия веществ через липидный бислой, через который легко проходят жирорастворимые вещества и вода. Липидный бислой непроницаем для заряженных молекул (ионов), и в то же время незаряженные малые молекулы могут свободно диффундировать, при этом, чем меньше молекула, тем быстрее она транспортируется. Довольно большая скорость диффузии воды через липидный бислой как раз и объясняется малой величиной ее молекул и отсутствием заряда.



При облегченной диффузии в транспорте веществ участвуют белки – переносчики, работающие по принципу «пинг-понг». Белок при этом существует в двух конформационных состояниях: в состоянии «понг» участки связывания транспортируемого вещества открыты с наружной стороны бислоя, а в состоянии «пинг» такие же участки открываются с другой стороны. Этот процесс обратимый. С какой же стороны в данный момент времени будет открыт участок связывания вещества, зависит от градиента концентрации, этого вещества.

Таким способом через мембрану проходят сахара и аминокислоты.

При облегченной диффузии скорость транспортировки веществ значительно возрастает в сравнении с простой диффузией.

Кроме белков-переносчиков, в облегченной диффузии принимают участие некоторые антибиотики, например, грамицидин и валиномицин.

Поскольку они обеспечивают транспорт ионов, их называют ионофорами.

Активный транспорт веществ в клетке. Этот вид транспорта всегда идет с затратой энергии. Источником энергии, необходимой для активного транспорта, является АТФ. Характерной особенностью этого вида транспорта является то, что он осуществляется двумя способами:


  1. с помощью ферментов, называемых АТФ-азами;

  2. транспорт в мембранной упаковке (эндоцитоз).

В наружной клеточной мембране присутствуют такие белки-ферменты, как АТФ-азы, функция которых заключается в обеспечении активного транспорта ионов против градиента концентрации. Поскольку они обеспечивают транспорт ионов, то этот процесс называют ионным насосом.

Известны четыре основные системы транспорта ионов в животной клетке. Три из них обеспечивают перенос через биологические мембраны .Na+ и К+, Са+, Н+, а четвертый - перенос протонов при работе дыхательной цепи митохондрии.

Примером механизма активного транспорта ионов может служить натрий-калиевый насос в животных клетках. Он поддерживает в клетке постоянную концентрацию ионов натрия и калия, которая отличается от концентрации этих веществ в окружающей среде: в норме в клетке ионов натрия бывает меньше, чем в окружающей среде, а калия - больше.

https://900igr.net/datas/biologija/stroenie-kletki-i-ejo-funktsii/0011-011-kalij-natrievyj-nasos.jpg

Рис.13. Схематическая модель калий-натриевого насоса.

Вследствие этого по законам простой диффузии калий стремится уйти из клетки, а натрий диффундирует в клетку. В противовес простой диффузии натрий - калиевый насос постоянно выкачивает из клетки натрий и вводит калий: на три молекулы выбрасываемого наружу натрия приходится две молекулы вводимого в клетку калия.

Обеспечивает этот транспорт ионов натрий-калий зависимая АТФ-аза -фермент локализующийся в мембране таким образом, что пронизывает всю ее толщу, С внутренней стороны мембраны к этому ферменту поступает натрий и АТФ, а с наружной - калий.

Перенос натрия и калия через мембрану совершается в результате конформационных изменений, которые претерпевает натрий-калий зависимая АТФ-аза, активизирующаяся при повышении концентрации натрия внутри клетки или калия в окружающей среде.

Для энергообеспечения этого насоса необходим гидролиз АТФ. Этот процесс обеспечивает все тот же фермент натрий-калий зависимая АТФ-аза. При этом более одной трети АТФ, потребляемой животной клеткой в состоянии покоя, расходуется на работу натрий - калиевого насоса.

Нарушение правильной работы натрий - калиевого насоса приводит к различным серьезным заболеваниям.

КПД этого насоса превышает 50%, чего не достигают самые совершенные машины, созданные человеком.

Многие системы активного транспорта приводятся в действие за счет энергии, запасенной в ионных градиентах, а не путем прямого гидролиза АТФ. Все они работают как котранспортные системы (способствующие транспорту низкомолекулярных соединений). Например, активный транспорт некоторых сахаров и аминокислот внутрь животных клеток обусловливается градиентом иона натрия, причем чем выше градиент ионов натрия, тем больше скорость всасывания глюкозы. И, наоборот, если концентрация натрия в межклеточном пространстве заметно уменьшается, транспорт глюкозы останавливается. При этом натрий должен присоединиться к натрий - зависимому белку-переносчику глюкозы, который имеет два участка связывания: один для глюкозы, другой для натрия. Ионы натрия, проникающие в клетку, способствуют введению в клетку и белка-переносчика вместе с глюкозой. Ионы натрия, проникшие в клетку вместе с глюкозой, выкачиваются обратно натрий -калий зависимой АТФ-азой, которая, поддерживая градиент концентрации натрия, косвенным путем контролирует транспорт глюкозы.



Транспорт веществ в мембранной упаковке. Крупные молекулы биополимеров практически не могут проникать через плазмалемму ни одним из вышеописанных механизмов транспорта веществ в клетку. Они захватываются клеткой и поглощаются в мембранной упаковке, что получило название эндоцитоза. Последний формально разделяют на фагоцитоз и пиноцитоз. Захват клеткой твердых частиц - это фагоцитоз, а жидких - пиноцитоз.
картинка 112 из 305

Рис. 14 Общая схема эндоцитоза.

При эндоцитозе наблюдаются следующие стадии:



  • рецепция поглощаемого вещества за счет рецепторов в мембране клеток;

  • инвагинация мембраны с образованием пузырька (везикулы);

  • отрыв эндоцитозного пузырька от мембраны с затратой энергии – образование фагосомы и восстановление целостности мембраны;


картинка 2 из 1752

Рис.15. Явление фагоцитоза в лейкоцитах.

- слияние фагосомы с лизосомой и образование фаголизосомы (пищеварительной вакуоли) в которой происходит переваривание поглощенных частиц;



  • выведение непереваренного в фаголизосоме материала из клетки (экзоцитоз).

В животном мире эндоцитоз является характерным способом питания многих одноклеточных организмов (например, у амеб), а среди много клеточных этот вид переваривания пищевых частиц встречается в энтодермальных клетках у кишечнополостных. Что касается млекопитающих и человека, то у них имеется ретикуло-гистио-эндотелиальная система клеток, обладающих способностью к эндоцитозу. Примером могут служить лейкоциты крови и купферовские клетки печени. Последние выстилают так называемые синусоидные капилляры печени и захватывают взвешенные в крови различные чужеродные частицы. Экзоцитоз - это и способ выведения из клетки многоклеточного организма секретируемого ею субстрата, необходимого для функции других клеток, тканей и органов.

Особенности структурной организации оболочки животных и растительных клеток
Плазматическая мембрана животных клеток покрыта снаружи (т.е. на стороне, не контактирующей с цитоплазмой) слоем олигосахаридных цепей, ковалентно присоединенных к мембранным белкам (гликопротеины) и в меньшей степени к липидам (гликолипиды). Это углеводное покрытие мембраны называется гликокаликсом. Назначение гликокаликса пока не очень ясно; есть предположение, что эта структура принимает участие в процессах межклеточного узнавания и взаимодействия.

У растительных клеток поверх наружной клеточной мембраны располагается плотная целлюлозная оболочка с порами, через которые осуществляется связь между соседними клетками посредством цитоплазматических мостиков.

У грибов наружная клеточная стенка построена из хитина.
Строение и функции цитоплазмы эукариотических клеток

Цитоплазма – это живое содержимое клетки без ядра или его эквивалента. Она имеет вязко-упругую консистенцию, которая может приобретать состояние геля или золя (становится жидкой). Во многих клетках наружный слой цитоплазмы (эктоплазма) содержит мало органоидов и постоянно находится в состоянии геля (студенистого вещества, обладающего способностью сохранять форму) или золя (жидкое состоние).

В цитоплазме различают: гиалоплазму, органоиды, цитоскелет, и включения.

Гиалоплазма представляет собой гомогенную субстанцию, заполняющую промежутки между структурно оформленными компонентами цитоплазмы. Она состоит из воды и множетва и разнообразных растворенных неорганических и органических веществ. Это место, где протекают важнейшие метаболические процессы и куда поступают многие промежуточные продукты обмена.

Органоиды (органеллы) – это структурно организованные компоненты цитоплазмы, выполняющие жизненно важные функции. По особенностям строения выделяют мембранные и немембранные органоиды. К мембранным органоидам относятся: эндоплазматическая сеть, митохондрии, аппарат Гольджи, лизосомы, пероксисомы, а в растительных клетках еще и пластиды, вакуоли. К немембранным органоидам относятся: рибосомы (и полисомы) и центросома. Все вышеуказанные органоиды относят к группе органоидов общего назначения. Кроме них, в ряде специализированных клеток присутствуют органоиды специального назначения, такие как реснички, жгутики, микроворсинки, миофибриллы.

Органоиды мембранного строения

Эндоплазматическая сеть – это совокупность трубчатых образований – каналов и плоских расширений – цистерн, которые в виде сети пронизывают всю цитоплазму. Их стенки образованы биологической мембраной. Различают гладкую и гранулярную эндоплазматическую сеть.



Рис.16 Схема строения эндоплазматической сети

Гранулярная (шероховатая) эндоплазматическая сеть со стороны гиалоплазмы покрыта рибосомами. Последние участвуют в синтезе белков, выделяемых (экскретируемых) из клетки, а также в синтезе белков-ферментов, необходимых для внутриклеточных процессов метаболизма или внутриклеточного пищеварения.

Белки, накапливающиеся в цистернах эндоплазматической сети, могут, минуя гиалоплазму, транспортироваться в комплекс Гольджи, где они накапливаются в лизосомах, либо формируют секреторные гранулы, одетые мембраной. Кроме того, в гранулярной эндоплазматической сети происходит синтез интегральных белков, встраивающихся в мембраны, а также модификации белков путем их связывания с другими органическими соединениями, например, с сахарами.

Агранулярная (гладкая) эндоплазматическая сеть не содержит рибосом. Она связана с метаболизмом липидов и некоторых полисахаридов. В поперечно-полосатой мускулатуре гладкая эндоплазматическая сеть способна депонировать ионы кальция, необходимые для сократительной деятельности. Помимо этого, она участвует в дезактивации ряда вредных веществ, особенно в клетках печени.



Коплекс Гольджи (пластинчатый комплекс) представлен скоплениями сплющенных цистерн, покрытых мембраной. Такие скопления называются диктиосомами. Сами цистерны сужены по центру и расширены в виде ампул по краям. В периферических участках таких скоплений цистерн происходит отшнуровывание мелких пузырьков (везикул). Отдельные диктиосомы могут связываться друг с другом системой везикул и цистерн, образуя рыхлую трехмерную сеть. Функции комплекса Гольджи состоят: в накоплении продуктов, синтезированных в эндоплазматической сети, и их созревании. На мембранах цистерн комплекса Гольджи синтезируются липиды и полисахариды, а также происходит комплексирование последних с белками (образуются мукопротеиды). За счет комплекса Гольджи происходит созревание и выделение секретов за пределы клеток. Кроме того, здесь образуются секреторные пузырьки и лизосомы, и происходит сортировка белков для различных транспортных пузырьков.



Рис. Схема ультрамикроскопического строения пластинчатого комплекса.

Сами мембраны комплекса Гольджи формируются при участии гранулярной эндоплазматической сети.


Лизосомы. Это шаровидные тельца (размер 0,2-0,4 мкм), покрытые мембраной. Они содержат более 30 видов гидролитических ферментов (гидролаз), которые расщепляют различные биополимеры. Местом синтеза этих ферментов служит гранулярная эндоплазматическая сеть.



Рис. Динамика преобразования лизосом

Различают: первичные, вторичные лизосомы (фаголизосомы и аутофаголизосомы) и остаточные тельца (телолизосомы). Первичные лизосомы содержат гидролазы, в том числе и кислую фосфатазу, которая служит маркером для лизосом. Вторичные лизосомы, или внутриклеточные пищеварительные вакуоли, образуются за счет слияния первичных лизосом с фагоцитарными вакуолями (фагосомами) или пиноцитозными вакуолями. Они называются фаголизосомы (или гетерофагосомами). Те же лизосомы, которые сливаются с измененными клеточными органоидами и переваривают их, называются аутофагосомами. Конечные вещества как продукты расщепления в виде мономеров попадают в гиалоплазму, где включаются в различные обменные процессы.

Если лизосомы переваривают субстрат не до конца, то в них накапливаются непереваренные продукты, и такие лизосомы называют телолизосомами (или остаточными тельцами).

Пероксисомы. Это небольшие округлые тельца (0,3-1,5 мкм), покрытые мембраной. Их содержимое представлено гранулярным матриксом, в центре которого встречаются кристаллоподобные структуры, состоящие из фибрилл и трубок. Пероксисомы, видимо, образуются на цистернах эндоплазматической сети. Особенно характерны для клеток печени и почек. В них обнаруживаются ферменты окисления аминокислот. При этом образуется перекись водорода, которая разрушается ферментом каталазой, присутствующей в пероксисомах. Это очень важно, так как перекись водорода – токсическое для клеток вещество.

Митохондрии. Это органоиды, обеспечивающие синтез АТФ за счет окисления органических веществ. Их форма и размеры в животных клетках разнообразны от округлой до палочковидной, а длина колеблется от 1 мкм до 10 мкм.



Рис. Схема ультрамикроскопического строения митохондрий.

Митохондрии покрыты двумя мембранами. Наружная мембрана, отделяющая их от гиалоплазмы, гладкая. Внутренняя митохондриальная мембрана ограничивает содержимое митохондрий (митрикс) и образует многочисленные гребневидные впячивания (кристы) внутрь митохондрий. Проницаемость внутренней мембраны очень мала, и через нее могут диффундировать только небольшие молекулы. Для активного транспорта этих веществ в ней имеются транспортные белки. В качестве интегральных белков во внутренней мембране и кристах находятся ферменты, участвующие в транспорте электронов (дыхательная цепь).

Со стороны матрикса на внутренней мембране и кристах располагаются грибовидные мембранные ферменты - АТФазы с округлой головкой на ножке. Матрикс содержит промежуточные продукты обмена, ДНК, которая способна к репликации и транскрипции, а также и рибосомы, все виды РНК, за счет чего идет синтез некоторых митохондриальных белков. Большинство же последних кодируются в хромосомах ядра и синтезируются на рибосомах цитоплазмы. ДНК митохондрий, как ДНК прокариот имеет кольцевидную форму и свободна от гистоновых и негистоновых белков.

Митохондрии размножаются поперечным делением.



Пластиды. Эти органоиды характерны для растительных клеток, и представлены зеленого цвета хлоропластами, красными, оранжевыми или желтыми хромопластами и бесцветными лейкопластами. Филогенетически более поздние формы пластиды –это хромопласты и лейкопласты. Основным пигментом хлоропластов является хлорофилл. Кроме него, хлоропласты содержат каротиноиды (оранжево-красные и желтые). У красных и сине-зеленых водорослей встречается голубой фикоцианин и красный фикоэритрин.

Клетки водорослей содержат один или несколько хлоропластов различной формы, а в клетках высших растений, как и у некоторых водорослей, имеется около 10-100 чечевицеобразных хлоропластов величиной 3-10 мкм.

Оболочка хлоропластов состоит из 2-х мембран, которая окружает бесцветный матрикс (строму). Наружная мембрана гладкая, а внутренняя имеет складки – тилакоиды. Среди последних имеются короткие группировки в виде стопок мембранных дисков с плотно упакованным хлорофиллом – это граны.
рисунок1

Рис. Схема ультрамикроскопического строения хлоропласта.

Между гранами, соединяя их, располагаются сетевидно переплетающиеся стромальные тилакоиды. В мембранах тилакоидов осуществляется та часть реакций фотосинтеза, с которй связано преобразование энергии (световые реакции). В этом процессе участвуют хлорофиллсодержащие фотосистемы, связанные цепью транспорта электронов, а также продуцирующая АТФ мембранная АТФаза.

Пластидная строма (матрикс) осуществляет темновые реакции фотосинтеза, в результате которых откладывается продукт реакций фотосинтеза – крахмал.

Содержащаяся в строме ДНК замкнута в кольцо и свободна от гистонов и негистоновых хромосомных белков. Имеет интроны. На каждый хлоропласт приходится от 3 до 30 копий ДНК. Они кодируют р-РНК, т-РНК, ферменты ДНК- и РНК-полимеразы, некоторые белки рибосом, пластидные цитохромы и большинство ферментов темнового этапа фотосинтеза. Однако большая часть пластидных белков кодируется в хромосомах.



<предыдущая страница | следующая страница>


Методическое пособие «Структурно-функциональная организация клеток»

Учебно-методическое пособие предназначено для студентов 1-го курса медицинского вуза

546.47kb.

16 12 2014
4 стр.


Структурно-функциональная организация палеоамигдалы: фундаментальные закономерности и прикладные аспекты 03. 00. 25 гистология, цитология и клеточная биология

Структурно-функциональная организация палеоамигдалы: фундаментальные закономерности и прикладные аспекты

876.41kb.

09 09 2014
5 стр.


Структурно-функциональная организация, механизм действия и иммунобиологические свойства γ-d-глутамил-l-триптофана (Бестима) 14. 00. 36 аллергология и иммунология

Работа выполнена в Государственном научно-исследовательском институте особо чистых биопрепаратов Федерального медико-биологического агентства России

427.87kb.

11 10 2014
3 стр.


Методическое пособие по дисциплине «Статистика» для специальности «Экономика и бухгалтерский учет (по отраслям): Методическое пособие /Под редакцией В. Ю. Ершовой

Данное методическое пособие предназначены для студентов и преподавателей колледжей, реализующих Государственный образовательный стандарт по всем специальностям, где проводится изуч

1269.9kb.

11 10 2014
12 стр.


Структурно-функциональная организация психологической защиты личности 19. 00. 03 психология труда, инженерная психология, эргономика по психологическим наукам

Работа выполнена на кафедре психологии труда и организационной психологии факультета психологии Ярославского государственного университета им. П. Г. Демидова

783.95kb.

10 10 2014
4 стр.


Методическое пособие и описание лабораторной работы (препринт) Составители: д т. н. Кирьянов К. Г. аспирант Семенчуков И. В

Данное методическое пособие и лабораторная работа соответствуют одному из разделов спецкурса "Математические модели в радиофизике: идентификация, диагностика

326.55kb.

14 12 2014
3 стр.


Методическое пособие по биологии. Тематический словарь. Подготовил

Надо выделить главное, выстроить материал так, чтобы каждое понятие было связано с предыдущим и последующим; если материал громоздкий, имеет смысл построить структурно-логическую с

254.39kb.

16 12 2014
1 стр.


А. А. Новакович учебно-методическое пособие

Учебно-методическое пособие разработано кандидатом физико-математических наук, доцентом кафедры теоретической и вычислительной физики юфу а. А. Новаковичем

662.29kb.

23 09 2014
1 стр.