Перейти на главную страницу
В зависимости от природы накапливающихся веществ лейкопласты делят на: амилопласты (запасающие крахмал); липидопласты, запасающие липиды в виде масел и жиров (например, в плодах ореха, в семенах подсолнечника); протеинопласты (в некоторых семенах, запасающих белки).
Незрелые пластиды (пропластиды) имеют неправильную форму. Их оболочка состоит из 2-х мембран. Они не имеют характерныхмембранных тилакоидов. Из пропластид в зависимости от их местоположения в растениях могут формироваться разные типы пластид. Для превращения пропластид в хлоропласты необходим свет, который стимулирует образование тилакоидов стромы и гран. В темноте эти процессы прерываются и образуется небольшое количество предшественника хлорофилла – прохлорофиллида. При освещении из протофиллида образуется хлорофилл, появляются тилакоиды и образуется хлоропласт.
Из хлоропластов могут формироваться хромопласты, а из лейкопластов – хлоропласты.
Размножение пластид связано с репликацией ДНК и последующим делением пропластиды или хлоропласта надвое. Пропластиды не только быстро делятся, но и могут возникать путем отпочковывания от хлоропластов или путем перестройки целых хлоропластов или лейкопластов.
Вакуоли встречаются и в некоторых животных клетках: фагоцитозные, пищеварительные, автофагические и сократительные.
В растительных клетках имеется одна крупная центральная вакуоль. Ее окружает мембрана, которая носит название тонопласт. Жидкость, заполняющая эту вакуоль, называется клеточным соком. Это концентрированный раствор минеральных солей, сахара, органических кислот, кислорода, оксида углерода, пигментов, вторичных продуктов метаболизма. Иногда у растений в вакуолях содержатся гидролитические ферменты, и тогда вакуоли действуют как лизосомы, вызывающие после гибели клеток их аутолиз.
Органоиды немембранного строения.
Рибосомы – органоиды, встречающиеся во всех клетках. Они имеют нуклеопротеидный состав: состоят примерно из равных количеств р-РНК и белка. Могут свободно располагаться в гиалоплазме или быть связанными с мембранами эндоплазматической сети. Различают 70S и 80S-рибосомы (S-сведберг, единица, характеризующая скорость седиментации в центрифуге. Чем больше число S, тем выше скорость седиментации). 70S-рибосомы присуттвуют у прокариот, а 80S-в цитоплазме эукариотических клеток.
Входящая в состав рибоом РНК называется рибосомной (р-РНК) и синтезируется в ядре в области ядрышка.
. Каждая рибосома состоит из 2-х субъединиц: малой и большой, между которыми в ходе синтеза белка ложится и-РНК. Малая субъединица связывается с и-РНК и активированными т-РНК. В большой субъединице присутствует фермент пептидилтрансфераза, которая катализирует присоединение аминокислот к растущей полипептидной цепи.
Рис. Рибосома
Терминирующие кодоны и-РНК (УАА,УАГ,УГА) контролируют отделение от рибосомы готового полипептида и и-РНК.
Центриоли - это центры организации митотического веретена. Они участвуют в делении клеток. В S-периоде клеточного цикла центриоли удваиваются. Образуется при этом новая центриоль, располагающаяся под прямым углом к первоначальной. При митозе пары центриолей (первоначальная и вновь образованная) расходятся к полюсам клетки и участвуют в образовании митотического веретена, индуцируя полимеризацию белка тубулина, который образует нити веретена.
К органоидам специального назначения относятся микроворсинки, реснички, жгутики, миофибриллы, псевдоподии.
Аксонема состоит из 9 периферических и двух центрально расположенных пар микротрубочек. Центральная пара окружена центральной оболочкой, от которой к периферическим парам в виде лучей расходятся радиальные спицы. Периферические пары микротрубочек связаны между собой белком нексином. Кроме того, от микротрубочек соседних пар отходят ручки из белка динеина, обладающего активностью АТФазы. Аксонема формируется путем самосборки белковых субъединиц. Матрицей для самосборки служит базальное тельце.
Цитоскелет - это трехмерный цитоплазматический комплекс волокнистых и трубчатых структур, придающий клетке определенную форму и выполняющий другие функции. Он представлен микротрубочками, микрофиламентами и промежуточными филаментами.
Их главная функция заключается в создании эластичного и устойчивого внутриклеточного каркаса, необходимого для поддержания формы клеток. Кроме того, они принимают участие в транспорте макромолекул и органоидов, обеспечивают подвижность жгутиков и ресничек. Входя в состав веретена деления обеспечивают расхождение хромосом при делении клеток. Они могут быть факторами ориентированного движения клетки в целом.
Разрушение микротрубочек колхицином приводит к нарушениям транспорта веществ (например, к блокаде секреции) и механического переноса отдельных внутриклеточных компонентов. Кроме того при делении клеток блокируется веретено деления.
Микрофиламенты – относятся к фибриллярным компонентам эукариотических клеток. Они располагаются в кортикальном слое цитоплазмы, прямо под плазмолеммой в виде пучков или слоями. В среднем их длина составляет 6 нм.
В зависимости от химического состава микрофиламенты могут выполнять функции цитоскелета и участвовать в обеспечении движения. В их состав входят сократительные белки: актин, миозин, тропомиозин и др.
Основные функции микрофиламентов – это создание внутриклеточного сократительного аппарата, который обеспечивает омебоидное движение клеток, большинство движений органоидов и деление клеток.
Промежуточные филаменты (микрофибриллы) – это тонкие неветвящиеся нередко лежащие пучками нити, которые присутствуют в клетках разных тканей и состоят из разных веществ, например, из кератина – в эпителии, десминах – в мышечных волокнах и др. Они выполняют опорно-каркасную функцию.
Включения
Включения– это непостоянные компоненты, которые могут появляться и исчезать в зависимости от функционального состояния клетки. Их классифицируют на: трофические, секреторные, экскреторные, пигментные, кристаллы. Трофические включения – это, как правило, резервные скопления гранул белка, гликогена, капельки жиров. Секреторные гранулы и пузырьки, которые содержат биологически активные вещества и поступают по протокам желез в те или иные органы. Экскреторные включения не являются биологически активными веществами. Обычно это продукты метаболизма клеток, подлежащие удалению. Пигментные включения могут изменить цвет ткани временно или постоянно (примеры: гемоглобин, меланин, липофусцин – пигмент изнашивания, билирубин и др.). В растительных клетках встречаются включения кристаллов (чаще всего это оксалат кальция).
Наиболее изучены три вида плазмид:
Плазмиды с фактором F+ могут существовать либо самостоятельно, либо встраиваясь в бактериальную хромосому. Клетки типа F+ могут передавать половой фактор клеткам типа F- ,протягивая к последним цитоплазматический мостик. Передаче фактора F+ предшествует репликация молекулы ДНК. При этом передается только одна из цепей ДНК, которая в дальнейшем достраивает вторую полинуклеотидную цепь.
В ряде случаев по цитоплазматическому мостику вместе с плазмидой, содержащей фактор F+, может передаваться фрагмент одной из цепей хромосомной ДНК, что лежит в основе рекомбинативной изменчивости у бактерий. С фактором F+ нередко передаются гены, сообщающие бактериям инфекционность.
С плазмидами с фактором R, связана устойчивость бактерий к ряду антибиотиков. Такие бактерии синтезируют ферменты, которые либо расщепляют антибиотики, либо снижают их активность. Плазмиды, содержащие фактор R, имеют ген образования коньюгационного мостика, по которому плазмида с фактором R перемещается из одной бактерии в другую, сообщая ей свойство устойчивости к тем или иным антибиотикам.
Существуют также плазмиды, которые влияют на патогенность бактерш плазмиды, кодирующие энтеротоксины, гемолизины и антигены, расположе на поверхности клеток.
Ядро ( лат. nucleus, греч. karion-ядро) – это обязательный компонент эукариотических клеток. Оно хорошо различимо в неделящихся клетках и выполняет ряд важнейших функций:
Клетка содержит, как правило, одно ядро, но имеются двуядерные и многоядерные клетки.
Интерфазные ядра состоят из: ядерной оболочки, ядерного сока (кариоплазма,кариолимфа или нуклеоплазма), ядерного белкового остова, хроматина и ядрышек.
Ядерная оболочка (кариолемма) состоит из двух мембран, между которыми имеется перинуклеарное пространство шириной 10-40нм. Наружная мембрана ядерной оболочки со стороны цитоплазмы в ряде участков переходит в мембраны эндоплазматической сети и на ее поверхности располагаются полирибосомы.
Рис. Полирибосомы.
Внутренняя мембрана ядерной оболочки участвует в обеспечении внутреннего порядка в ядре - в фиксации хромосом в трехмерном пространстве. Эта связь опосредуется с помощью слоя фибриллярных белков, сходных с промежуточными филаментами цитоплазмы. Они располагаются в виде слоя и образуют так называемую ламину.
В ядерной оболочке имеются поры диаметром около 90 нм. В этих участках по краям отверстия мембраны ядерной оболочки сливаются. Сами отверстия заполняются сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и заполняющих их структур называется поровым комплексом. По краю порового отверстия располагаются в три ряда белковые гранулы (по 8 гранул в каждом ряду). При этом один ряд лежит со стороны цитоплазмы, другой со стороны внутреннего содержимого ядра, а третий – между ними. От гранул этих слоев радиально отходят фибриллярные отростки, образуя в поре как бы перепонку – диафрагму. Фибриллярные отростки направляются к центрально расположенной грануле, представляющей собой вновь синтезированную субъединицу рибосомы.
Поровые комплексы участвуют в рецепции транспортируемых через поры макромолекул (белков и нуклеопротеидов), а также в активном переносе через ядерную оболочку этих веществ с использованием АТФ.
Число ядерных пор зависит от метаболической активности клеток. Чем интенсивнее протекают в клетке процессы синтеза, тем больше пор. В среднем на одно ядро приходится несколько тысяч поровых комплексов.
Основные функции ядерной оболочки следующие:
- барьерная (отделение содержимого ядра от цитоплазмы и ограничение свободного доступа в ядро крупных биополимеров);
- регуляция транспорта макромолекул между ядром и цитоплазмой;
- участие в создании внутриядерного порядка (фиксация хромосомного аппарата).
Декомпактизированные участки хромосом, которые плохо окрашиваются ядерными красителями, называется эухроматином .Это функционально активный, транскрибируемый хроматин.
Ядрышки содержат более 80% белка и около 15% рРНК, а также ядрышковый хроматин. Ядрышки образуются в области вторичных перетяжек хромосом, представленных ядрышковыми организаторами. При транскрипции этих участков хромосом образуется рибосомальная РНК, которая связываясь с белками, участвует в формировании малых и больших субъединиц рибосом.
Ядро ( лат. nucleus, греч. karion-ядро) – это обязательный компонент эукариотических клеток.
Клетка содержит, как правило, одно ядро, но имеются двуядерные и многоядерные клетки.
Интерфазные ядра состоят из: ядерной оболочки, ядерного сока (кариоплазма,кариолимфа или нуклеоплазма), ядерного белкового остова, хроматина и ядрышек.
Ядерная оболочка (кариолемма) состоит из двух мембран, между которыми имеется перинуклеарное пространство шириной 10-40нм. Наружная мембрана ядерной оболочки со стороны цитоплазмы в ряде участков переходит в мембраны эндоплазматической сети, и на ее поверхности располагаются полирибосомы. Внутренняя мембрана ядерной оболочки участвует в обеспечении внутреннего порядка в ядре - в фиксации хромосом в трехмерном пространстве. Эта связь опосредуется с помощью слоя фибриллярных белков, сходных с промежуточными филаментами цитоплазмы.
В ядерной оболочке имеются поры диаметром около 90 нм. В этих участках по краям отверстия, мембраны ядерной оболочки сливаются. Сами отверстия заполняются сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и заполняющих их структур называется поровым комплексом.
По краю порового отверстия располагаются в три ряда гранулы (по8 гранул в каждом ряду). При этом один ряд лежит со стороны цитоплазмы, другой со стороны внутреннего содержимого ядра, а третий – между ними. От гранул этих слоев радиально отходят фибриллярные отростки, образуя в поре как бы перепонку – диафрагму. Фибриллярные отростки направляются к центрально расположенной грануле.
Поровые комплексы участвуют в рецепции транспортируемых через поры макромолекул (белков и нуклеопротеидов), а также в активном переносе через ядерную оболочку этих веществ с использованием АТФ.
Число ядерных пор зависит от метаболической активности клеток. Чем интенсивнее протекают в клетке процессы синтеза, тем больше пор. В среднем на одно ядро приходится несколько тысяч поровых комплексов.
- барьерная (отделение содержимого ядра от цитоплазмы и ограничение свободного доступа в ядро крупных биополимеров);
- регуляция транспорта макромолекул между ядром и цитоплазмой;
- участие в создании внутриядерного порядка (фиксация хромосомного аппарата).
В этот период разные участки хромосом имеют неодинаковую степень компактизации. Наибольшей степенью компактизации обладают генетически инертные участки хромосом. Они хорошо окрашиваются ядерными красителями и называются гетерохроматином. Различают конститутивный и факультативный гетерохроматин. Конститутивный образован нетранскрибируемой ДНК. Полагают, что он участвует в поддержании структуры ядра, прикреплении хромосом к ядерной оболочке, узнавании при мейозе гомологичных хромосом, разделении соседних структурных генов и в процессах регуляции их активности.
Декомпактизированные участки хромосом, которые плохо окрашиваются ядерными красителями, называется эухроматином .Это функционально активный, транскрибируемый хроматин.
Ядрышки содержат более 80% белка и около 15% рРНК, а также ядрышковый хроматин. Ядрышки образуются в области вторичных перетяжек хромосом, представленных ядрышковыми организаторами. При транскрипции этих участков хромосом образуется рибосомальная РНК, которая связываясь с белками, участвует в формировании малых и больших субъединиц рибосом.
Учебно-методическое пособие предназначено для студентов 1-го курса медицинского вуза
16 12 2014
4 стр.
Структурно-функциональная организация палеоамигдалы: фундаментальные закономерности и прикладные аспекты
09 09 2014
5 стр.
Работа выполнена в Государственном научно-исследовательском институте особо чистых биопрепаратов Федерального медико-биологического агентства России
11 10 2014
3 стр.
Данное методическое пособие предназначены для студентов и преподавателей колледжей, реализующих Государственный образовательный стандарт по всем специальностям, где проводится изуч
11 10 2014
12 стр.
Работа выполнена на кафедре психологии труда и организационной психологии факультета психологии Ярославского государственного университета им. П. Г. Демидова
10 10 2014
4 стр.
Данное методическое пособие и лабораторная работа соответствуют одному из разделов спецкурса "Математические модели в радиофизике: идентификация, диагностика
14 12 2014
3 стр.
Надо выделить главное, выстроить материал так, чтобы каждое понятие было связано с предыдущим и последующим; если материал громоздкий, имеет смысл построить структурно-логическую с
16 12 2014
1 стр.
Учебно-методическое пособие разработано кандидатом физико-математических наук, доцентом кафедры теоретической и вычислительной физики юфу а. А. Новаковичем
23 09 2014
1 стр.