Специальная теория относительности
Это теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.
Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, — релятивистскими скоростями.
Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре и А. Эйнштейна. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.
Эйнштейн без единого нового эксперимента, проанализировав и обобщив уже известные опытные факты, впервые изложил идеи теории относительности, которые коренным образом изменили привычные представления о свойствах пространства и времени.
Теория относительности Эйнштейна состоит из двух частей: специальной и общей теории относительности. В 1905 г. Эйнштейн опубликовал основные идеи частной или специальной теории относительности, в которой рассматриваются свойства пространства и времени, справедливые при условиях, когда можно пренебречь тяготением тел, т.е. считать их гравитационные поля 'пренебрежимо малыми. Теория относительности, в которой рассматриваются свойства пространства и времени в сильных гравитационных полях, называется общей теорией относительности. Принципы общей теории относительности были изложены Эйнштейном на 10 лет позже, чем частной, в 1915 г.
О́пыт Ма́йкельсона
физический опыт, поставленный Альбертом Майкельсоном на своём интерферометре в 1881 году, с целью измерения зависимости скорости света от движения Земли относительно эфира. Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой распространяется свет подобно звуковым колебаниям. Результат эксперимента по мнению Майкельсона был отрицательный — смещение полос не совпадают по фазе с теоретическими, но колебания этих смещений только немного меньше теоретических. Позже, в 1887 году Майкельсон, совместно с Морли, провёл аналогичный, но более точный эксперимент, известный как эксперимент Майкельсона-Морли и показавший, что наблюдавшееся смещение меньше 1/20 теоретического и, вероятно меньше 1/40. В теории неувлекаемого эфира смещение должно быть пропорционально квадрату скорости; поэтому результаты, равносильны тому, что относительная скорость Земли в эфире, меньше 1/6 орбитальной скорости и, несомненно меньше 1/4. "Из всего сказанного, - заключают свою статью Майкельсон и Морли, - явствует, что безнадежно пытаться решить вопрос о движении солнечной системы по наблюдениям оптических явлений на поверхности Земли.
В основу специальной теории относительности Эйнштейна легли два постулата,(основанные на выше описанных опытах Майкельсона и Морли) т.е. утверждения, которые принимаются за истинные в рамках данной научной теории без доказательств (в математике такие утверждения называются аксиомами).
Постулаты Эйнштейна
1) Постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.
2) Постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.
Сокращение линейных размеров
Если длину (форму) движущегося объекта определять при помощи одновременной фиксации координат его поверхности, то из преобразований следует, что линейные размеры такого тела относительно «неподвижной» системы отсчёта сокращаются:
,
Интервал времени между двумя событиями:
В движущейся системе отсчета время течет медленнее:
Релятивистский закон сложения скоростей
Напомним, что кинематика не занимается поиском причин движения, а утверждает, например, следующее: если скорости заданы, то можно найти результат сложения скоростей. Вопросы динамики частиц (она занимается причинами движений) требуют отдельного рассмотрения.



Сделаем теперь замечание по поводу релятивистского закона сложения скоростей. Для двух систем, непосредственно участвующих в относительном движении, не возникает сомнения при определении их относительной скорости (ни в классической физике, ни в СТО). Пусть система
А движется относительно системы
В со скоростью

; аналогично, система
C движется относительно
A со скоростью

. Фактически, релятивистский закон сложения скоростей определяет относительную скорость того движения, в котором наблюдатель сам не участвует. Скорость движения системы
C относительно
B определится так:
а
c
b
Система "А"
Система "С"
Система "B"
Релятивистская динамика
Энергия и импульс
Если частица с массой m движется со скоростью

, то её энергия и импульс имеют следующую зависимость от скорости:
При нулевой скорости, энергия частицы называется энергией покоя: .
В современной физической литературе, принято, что m — масса частицы не зависит от скорости, являясь инвариантом относительно преобразований Лоренца, и является величиной неаддитивной. Понятие «релятивистской массы», зависящей от скорости не используется , хотя оно и встречается в ранних работах по теории относительности. Историческая причина введения этого понятия была связана с попытками сохранить для релятивистского импульса классическую форму.
Уравнения движения
Действующая на тело сила
F изменяет его импульс. Поэтому второй закон Ньютона в форме
остаётся справедливым также и в теории относительности. Однако, производная по времени берётся от релятивистского импульса, а не от классического. Это приводит к тому, что связь силы и ускорения существенно отличается от классической:
Первое слагаемое содержит «релятивистскую массу» равную отношению силы к ускорению. В ранних работах по теории относительности её называли «продольной массой». Второе слагаемое содержит «поперечную массу». Как было отмечено выше, эти понятия являются устаревшими и связаны с попыткой сохранить классическое уравнение движения Ньютона .
Увеличение массы
Релятивистский закон увеличения массы сказывается например на движение молекул газа в болоне если газ нагреть, скорость молекул возрастет, а вместе с нею и их масса. Газ станет тяжелее :
Эффект Доплера
Пусть источник, движущийся со скоростью v, излучает со скоростью света периодический сигнал, имеющий частоту

. Эта частота измеряется наблюдателем, связанным с источником (т. н. собственная частота). Если этот же сигнал регистрируется «неподвижным» наблюдателем, то его частота

будет отличаться от собственной частоты:
где
— угол между направлением на источник и его скоростью.
Различают продольный и поперечный эффект Доплера. В первом случае
, то есть источник и приёмник находятся на одной прямой. Если источник движется от приёмника, то его частота уменьшается
(красное смещение), а если приближается, то частота увеличивается
(синее смещение):
Поперечный эффект возникает, когда
, то есть направление на источник перпендикулярно его скорости (например, источник «пролетает над» приёмником). В этом случае непосредственно проявляется эффект замедления времени:
-
Аналога поперечного эффекта в классической физике нет, и это чисто релятивистский эффект. В отличие от этого, продольный эффект Доплера обусловлен как классической составляющей, так и релятивистским эффектом замедления времени.