Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1страница 2страница 3 ... страница 12страница 13

Змеевиковые аппараты непрерывного и периодического действия широко используют для уваривания сиропов, рецептурных смесей и т.п. Змеевиковые теплообменные аппараты представляют большую группу специальных аппаратов, они просты в изготовлении, удобны в эксплуатации, обеспечивают хорошие энергетические показатели. Однако из-за слабой циркуляции раствора имеют невысокий коэффициент теплопередачи.

Примером змеевикового теплообменного аппарата периодического действия является диссутор-аппарат для приготовления сахарно-паточного раствора. Диссуторы могут быть открытые и закрытые, с паровой рубашкой и без неё.



Унифицированный змеевиковый вакуум-аппарат 33-2А (рис.4.10) состоит из цилиндрического сварного котла 1 со съемной крышкой 8. Через штуцер 2, расположенный в верхней части обечайки, поступает греющий пар под избыточным давлением 0,7…08, МПа. Через штуцер 10 отводится конденсат, а через кран 12 выводится готовый продукт. В паровом пространстве греющий пар омывает медный змеевик 3. Нижний конец змеевика присоединяется фланцем 11 к сиропному насосу плунжерного типа, создающего давление 0,4 МПа. Верхний конец змеевика при помощи фланца 4 присоединен к трубе 5, которая вторым концом соединена с вакуум-камерой 18.

В змеевик поступает сироп или рецептурная смесь. Увариваемый продукт поднимается по внутренним спиралям вверх, а затем проходит по соединительной трубе в нижнюю спираль наружного змеевика и далее вверх по спиралям наружного змеевика. Из верхней спирали наружного змеевика увариваемый продукт поднимается по соединительной трубе 5 и из её верхнего конца поступает в вакуум-камеру 18. Масса собирается в медном конусе 16, который имеет внизу клапан 22. Верхняя кромка конуса зажата болтами 17 между фланцами вакуум-камеры и обечайки 15. Чтобы масса не застыла, конус обогревается паром, поступающим в змеевик 21. Он находится внутри обечайки 15 с крышкой 14.

Вместе с карамельной массой из соединительной трубы в вакуум-камеру входит также вторичный пар и воздух, выделяющиеся из сиропа при его упаривании. Они удаляются в конденсатор через патрубок 20. Отбойник 19 препятствует уносу крупных капель карамельной массы.

Рис. 4.10. Унифицированный змеевиковый вакуум-аппарат 33-2А

Обычно увариваемая масса накапливается в приемнике 13 при открытом клапане 22 и закрытом клапане 24. В этом случае объем вакуум-камеры получается на 80 дм3 больше. Кроме сливного отверстия вакуум-камера сообщается с приемником через кран 28 и трубопровод 27. Приемник снабжен рубашкой 23 для обогрева. В змеевик 21 и паровую рубашку 23 греющий пар подается по трубе 29. Рубашка 23 имеет продувочный кран 33. Когда в приемнике скопится достаточное количество (16…18 кг) массы, закрывают рукояткой 25 клапан 22 сливного отверстия, а при помощи крана 28 разобщают приемник с вакуум-камерой.

После этого, открыв кран 26, в приемник впускают воздух, и поворачивая рукоятку клапана 24 открывают выпускное отверстие. Масса сливается из аппарата. По окончанию слива закрывают отверстие клапаном 24, сообщают при помощи крана 28 приемник с вакуум-камерой. Когда в приемнике установится такое же разряжение, как в вакуум-камере, открывают выпускные отверстия, поворачивая клапан 22.

Окно 32 служит для наблюдения за спуском карамельной массы из конуса в приемник. Разряжение в вакуум-камере регистрируется вакуумметром 30. Давление греющегося пара измеряется манометром 6. Через воздушный кран 7 периодически выпускают воздух из парового пространства. Предохранительный клапан 9 служит для предотвращения разрыва аппарата в случае увеличения давления греющего пара.

Вакуум-камера с приемником подвешивается при помощи тяг 31 к потолку или кронштейну, прикрепленному к стене. Это удобно при ремонтах и эксплуатации.

Ловушка 35 с крышкой 34 и перегородкой 36 монтируется на трубопроводе между вакуум-камерой и конденсатором. Уловленная в виде мелких капель масса выпускается периодически через кран 37.

В подобном аппарате можно уваривать начинки, мармеладные смеси и т.п. В аппаратах, предназначенных для уваривания начинки, вакуум-камера имеет объем, увеличенный в 7 раз. При меньшем объеме вакуум-камеры начинка выбрасывается вторичным паром в конденсатор. Аппараты меньшей производительности имеют медный змеевик из одной спиральной трубки внутренним диаметром 40 мм.

Греющая часть змеевиковых аппаратов используется также для уваривания рецептурных смесей и сиропа под атмосферным давлением. В этом случае конец змеевика соединяется с центробежным пароотделителем, который показан на рис. 4.10в. Пар и уваренная масса выходят из трубки 1 в центробежный пароотделитель. Масса стекает вниз и непрерывно выходит из аппарата, а вторичный пар по центральной трубе 2 поступает в вытяжные вентиляционные трубы.

Отложения сахара на внутренней поверхности трубки змеевика смывают горячей водой два раза в смену. Раз в неделю трубку протравливают горячим 2% раствором гидроксида натрия в течении 24 часов.

Унифицированный змеевиковый вакуум-выпарной аппарат 33-2А выпускается производительностью 1000 и 500 кг/ч. В первом случае поверхность теплообменника составляет 7,5 м2, а во втором – 4,2 м2, объем парового пространства 570 дм3 и 330 дм3 соответственно.

Определение производительности и энергозатрат. Производительность однокорпусного выпарного аппарата определяется из уравнений материального баланса: и ,

где: GН – количество исходного раствора, кг/ч; GК – количество упаренного раствора, кг/ч; xН и xК – соответственно начальная и конечная концентрации раствора, мас. %

Из уравнений материального баланса находят количество выпаренного растворителя и конечную концентрацию раствора.

Анализ уравнения теплового баланса на работу однокорпусного выпарного аппарата показывает, что расход пара определяется главным образом расходом пара на собственно выпаривание растворителя:



,

где: i, i', i" – энтальпия соответственно вторичного пара, конденсата, греющего пара; tН – начальная температура раствора, °C; cН – начальная теплоемкость раствора, кДж/(кг·град)

Следует иметь в виду, что . Тогда следует, что для испарения 1 кг воды требуется затратить 1,1…1,2 кг насыщенного водяного пара.

Уравнения материального баланса для однокорпусной выпарной установки справедливы и для многокорпусной и могут быть использованы для определения GК , W, xК.

Расход греющего пара в многокорпусной выпарной установке, работающей без отбора экстра-пара приближенно может быть определен: для двухкорпусной – 0,55…0,6 кг пара на 1 кг испаренной воды, для трехкорпусной – 0,27…0,3 кг.

4.1.3. Развариватели крахмалосодержащего сырья
Измельченное крахмалосодержащее сырье перед развариванием смешивается с горячей водой, и затем полученный замес нагревают вторичным паром. По схеме скоростного разваривания смешивание сырья с водой и нагревание массы производят раздельно: смешивание – в смесителях, нагревание в трубчатом теплообменнике. По схеме разваривания при пониженной температуре смешивание и нагревание замеса производят в одном аппарате – в смесителе предразварнике.

Вертикальный цилиндрический смеситель (рис. 4.11) вместимостью 1,5 м3 снабжен пропеллерной мешалкой 6 для смешивания дробленного сырья с водой. Сырье подается в смеситель по патрубку 5, а вода – по трубе 4. Для распыления воды в стенках трубы просверлены отверстия диаметром 2 мм. Конец трубы 4 заглушен. Такая подача воды улучшает равномерность смешивания. Подогревание смеси производится через змеевик 2. Уровень массы в смесителе контролируется электрическим сигнализатором 6, поплавок которого расположен в трубе 7. С целью уменьшения воздействия перемешиваемой массы на поплавок сигнализатора труба 7 снизу перекрыта решеткой 8, которая стабилизирует в зоне поплавка уровень массы. Для контроля режима работы смесителя на корпусе размещены кран 3 для отбора пробы и штуцер 9 для термометра. Продолжительность смешивания при переработке зерна 15 мин, картофеля – 10 мин.

Вода в смеситель должна подаваться температурой не более 45°C, т.к. в противном случае мука измельченного продукта образует комочки, которые затем не провариваются. Из смесителя замес подается в трубчатый теплообменник, где нагревается




Рис. 4.11. Вертикальный цилиндрический смеситель
вторичным паром до температуры 70…75°C. Теплообменник типа «труба в трубе» изготавливается из стальных труб диаметром 180 мм (наружные трубы) и 108 мм (внутренние трубы).

Контактная головка с двухсторонним подводом пара (рис. 4.12) предназначена для спиртовых заводов производительностью 1700…2500 дал/сутки. В корпусе 3 расположены трубы 4 и 5, в которых просверлены отверстия диаметром 5 мм. В каждой трубе по высоте имеется 10 рядов по 13 отверстий в каждом. Замес подается в контактную головку по патрубку 1. В головке замес течет в кольцевом зазоре. Пар, подаваемый по патрубкам 2 и 6, пронизывает слой замеса с двух сторон. Такой подвод пара обеспечивает быстрое и равномерное нагревание замеса.

Определенный уровень массы на выходе из варочного аппарата поддерживается поплавковым регулятором.



Определение производительности и энергозатрат. Количество замеса, развариваемого в течении часа П (кг) определяется по формуле

,

где: G – условная производительность завода, дал/сутки; m – количество замеса, м3/дал (m = 0,133); ρ – плотность замеса, кг/м3.

Необходимый объем варочного котла V3) определяется как

,

где: τ – продолжительность разваривания, ч (для колонного аппарата τ = 0,75…0,66, для трубчатого τ = 0,03…0,05); φ – коэффициент заполнения (для колонного аппарата φ = 0,75…0,8, для трубчатого φ = 0,32).

Количество теплоты, необходимой для разваривания массы Q (кВт),


Рис. 4.12. Контактная головка с двусторонним подводом пара
,

где: cМ – удельная теплоемкость массы, кДж/(кг·К), t1 – начальная температура массы, поступающей на разваривание, °C; t2 – температура разваривания в аппарате (для колонного аппарата t2 = 140°C, для трубчатого – t2 = 168…165°C).

Расход пара в контактной головке для подогревания замеса до температуры разваривания D (кг/с) определяется по формуле ,

где: i – удельная энтропия пара, кДж/кг; iК – удельная энтальпия конденсата, кДж/кг.

Мощность потребная для работы мешалки, в установившемся режиме, без учета сопротивления змеевиков –

, кВт.

где: КN – критерий мощности, который зависит от интенсивности перемешивания, характеризующийся центробежным критерием Рейнольдса; ρ – плотность среды, кг/м3; n – частота вращения мешалки, мин-1; d – диаметр мешалки, м.

Установленная мощность приводного электродвигателя Nуст (кВт) с учетом коэффициента запаса мощности 20% и КПД редуктора (ηР):

4.1.4. Ошпариватели и бланширователи для фруктов и овощей
Закрытый ошпариватель (дигестер), представленный на рис. 4.13, в своей конусной части 7 имеет перфорированное днище 6. Пар давлением 0,2 МПа подводится через два штуцера 5 в пространство между корпусом аппарата и ложным днищем 6. Пар давлением 0,2 МПа подводится через два штуцера 5 в пространство между корпусом аппарата и ложным днищем 6. Пройдя через отверстия в днище, пар попадает в рабочую часть аппарата. На вертикальном валу 4 укреплены лопастная мешалка 3 и шнек, перемешивающие обрабатываемый продукт.

Во время работы шпарителя через бункер 1 загружают до 2000 кг сырья. Задвижку плотно закрывают и через штуцер подают пар при одновременном выпуске воздуха через кран до появления струи пара. После этого кран закрывают и доводят давление пара в аппарате до 0,2 МПа. Когда в ошпаривателе достигнута нужная температура (105…110°C), запускают мешалку 3.



Собственно шпарка продолжается 15…25 минут в зависимости от вида сырья, его зрелости и размеров, а также от вида изготавливаемых консервов. По окончанию шпарки закрывают вентили, через которые подавался пар, открывают задвижку 8 и выгружают массу в протирочную машину.

Барабанные бланширователи (рис. 4.14) содержат в своем комплекте вращающийся барабан 3, изготовленный из листовой стали с отверстиями по поверхности 4 (диаметр отверстий 3…4 мм) и размещенный на стальных кольцах 2.




Рис. 4.13. Закрытый

ошпариватель (дигестер)


При вращении барабана продукт при помощи спирали 4 перемещается в горячей воде от места загрузки в загрузочный бункер 1 к месту выгрузки. Продолжительность бланширования регулируется частотой вращения барабана. В месте выгрузки продукта спираль заканчивается лопастями, захватывающими продукт и выбрасывающими его в разгрузочный желоб 5.

При частоте вращения барабана 3,5 мин-1 производительность бланширователя составляет 0,7…0,84 кг/с при потребляемой мощности 1,5 кВт.

Недостатки бланширователя: отсутствие устройств автоматически регулирующих и поддерживающих требуемую температуру воды, неудобство очистки отверстий в барабанах, механическое повреждение продукта при выгрузке из барабана, увеличивающие потери, особенно когда толщина слоя продукта в барабане увеличивается.

Рис. 4.14. Барабанный бланширователь


В последних конструкциях барабанных бланширователей предусмотрено автоматическое регулирование температуры применением электронных автоматических трехпозиционных регуляторов. Барабанный бланширователь имеет разъемный барабан, что позволяет производить очистку. Бланширователь снабжен терморегулятором 5, поддерживающим заданную температуру воды. Вариатор частоты вращения барабана позволяет менять время бланширования с 1,5 до 12 мин.

Расчет производительности и энергозатрат. Расход пара D (кг/с) определяется зависимостью ,

где: Q0 – общий расход теплоты, кВт; i и iК – энтальпия греющего пара и конденсата, кДж/кг.

Общий расход теплоты Q0 (кВт) при водяной тепловой обработке за счет нагрева воды барботированием пара

,

где: Q1 – расход теплоты на нагрев продукта, кВт; Q2 – расход теплоты на испарение влаги с поверхности зеркала воды, кВт (в закрытых бланширователях этот расход теплоты не учитывается); Q3 – расход теплоты на подогрев доливаемой в ванну бланширователя воды, кВт; Q4 – расход теплоты на нагрев транспортирующего органа, кВт; Q5 – потери теплоты в окружающую среду, кВт.

Общий расход теплоты Q0 (кВт) при ошпаривании и бланшировании в среде пара ,

где: – расход теплоты на нагрев продукта, кВт; – расход теплоты на нагрев транспортирующего органа, кВт; – расход теплоты на компенсацию потерь от стенок аппарата, кВт.

Производительность периодически действующего закрытого ош паривателя П (кг/с)

,

где: V – полный объем аппарата, м3; φ – коэффициент заполнения аппарата (φ = 0,8); ρ – насыпная плотность продукта, кг/м3; τ – продолжительность цикла работы аппарата, с.

Производительность барабанного бланширователя П (кг/ч) по зеленому горошку определяется как

,

где: h – ширина полосы спирали, м; R – наружный радиус барабана, м; S – шаг спирали, м; n – частота вращения барабана, мин-1; ρ – плотность продукта, кг/м3; φ – коэффициент, учитывающий отклонения (φ = 0,95).



4.1.5. Оборудование для пастеризации, стерилизации и термообработки пищевых сред
Автоклав Б6-КАВ-2 (Б6-КАВ-4) предназначен для стерилизации герметически укупоренных банок с продуктом при температуре свыше 100°C. Автоклав Б6-КАВ-2 (рис. 4.15) состоит из корпуса 3, крышки 4, корзин 10 и штуцера 9 для подключения регулятора, арматуры для соединения с магистралями пара, воды, воздуха и для спуска конденсата. Сварной корпус автоклава состоит из цилиндрических обечаек толщиной 6 мм и днища толщиной 8 мм. На корпусе установлены манометры 8, термометр 7 и датчики регулятора. Внизу корпуса расположены паровой барботер 11 и сливной патрубок со стаканом.
Рис. 4.15. Автоклав Б6-КАВ-2
Фланцы, крышки и корпуса прижимаются один к другому с помощью быстродействующего зажима 2, состоящего из пятнадцати секторных захватов, укрепленных на кольце из пружинной полосовой стали, и рычажной системы для стягивания и разведения поясного зажима. На крышке имеются штуцера для предохранительного клапана 5 и пробно-спускного крана 6. Крышка имеет уравновешивающее устройство 1, облегчающее открывание и закрывание её.

Наполненные банками корзины устанавливаются в автоклаве одна на другую, после чего крышка закрывается. Сосуд наполняется водой, а через барботер подается пар. Воздушным компрессором создается и поддерживается в системе постоянное давление. По истечении времени, необходимого для стерилизации, пар и горячая вода постепенно вытесняется из аппарата холодной водой. После охлаждения корзины с банками выгружаются из аппарата.



Инжекционный стерилизатор применяется для асептического консервирования, при котором продукт подвергается кратковременной стерилизации при высоких (до 140°C) температурах. Затем он быстро охлаждается и фасуется в асептических условиях.


Рис. 4.16. Принципиальная схема инжекционного стерилизатора
Стерилизацию проводят в пластинчатых или трубчатых теплообменниках, а также в пароконтактных стерилизаторах. В этих аппаратах продукт смешивается с инжектируемым паром высокого давления и затем охлаждается в вакуум-камере. Преимуществом таких стерилизаторов является отсутствие пригорания продукта, значительное сокращение продолжительности нагрева по сравнению с пластинчатыми теплообменниками. Охлаждение продукта в вакуум-камере происходит практически мгновенно.

Принципиальная схема инжекционного стерилизатора представлена на рис. 4.16. Продукт насосом 1 нагнетается в инжекционную головку 2, в которой он смешивается с острым паром, проходящим через отверстие 3. Благодаря интенсивному перемешиванию мешалкой, установленной на валу 4, продукт равномерно нагревается до температуры, соответствующей давлению пара. При этой температуре продукт находится в трубе 5 необходимое для стерилизации время.

После вторичного перемешивания мешалкой 6 продукт поступает в вакуум-камеру 9 через обратный клапан 7. За счет резкого сброса давления происходит самоиспарение воды из продукта и охлаждение его до 35…37°C. Образовавшиеся в вакуум-камере вторичные пары по трубе 8 направляются в конденсатор, соединенный с вакуум-насосом.

Продукт по барометрической трубе 10 перемещается к продуктовому насосу 11 и нагнетается им в наполнитель или асептическую емкость.

Температура стерилизации регулируется давлением и количеством острого пара, подаваемого в инжекционную головку.

Пастеризаторы. Для пастеризации отдельных видов консервов используют ленточные или конвейерные установки, у которых транспортирующий механизм перемещает продукцию в банках или бутылках через тоннель, разделенный на три зоны: подогрева, пастеризации, охлаждения.

Пастеризация жидких продуктов (молока, сливок, соков, пива, пюре и т.п.) зачастую осуществляется в специальных проточных пластинчатых или трубчатых установках, в которых продукт последовательно проходит через три секции: нагрева, пастеризации, охлаждения.



Пастеризаторы непрерывного действия могут иметь в своем составе устройства для:

  • экстрагирования пастеризуемого продукта, т.е. для прогрева паровоздушной смеси в незаполненном пространстве банки, с целью снижения давления в банке и ликвидации брака от срывания крышек;

  • деаэрирования пастеризуемого продукта, что достигается распределением его тонкой пленкой по перфорированной поверхности;

  • дезодорации пастеризуемого продукта, т.е. удаление нежелательных запахов и вкусов;

  • очистки и гомогенизации пастеризуемого продукта.

Устройства для термовакуумной обработки жидких пищевых продуктов. В некоторых технологиях применяют различные устройства для удаления нежелательных запахов и привкусов из сырья и полуфабрикатов (молока, сливок, растительных масел и т.п.). Эти устройства носят названия дезодораторов и широко различаются по конструктивному исполнению (вертикальные емкости, в которых размещают различные вращающиеся конусы, диски, барабаны, устройства, аналогичные барометрическим конденсаторам и т.п.). Задача таких устройств - обеспечивать необходимую поверхность контакта фаз для эффективного проведения дезодорации.

Рис. 4.17. Термовакуумная установка:

1 – вакуум-насос; 2 – обратный клапан; 3 – конденсатор; 4 – термометр; 5 – воздушный клапан; 6 – вакуумметр; 7 – обратный клапан; 8 – крышка-отражатель; 9 – перфорированная камера; 10 – шарообразные тела; 11 – вакуум-камера; 12 – насос для продукта; 13 – электродвигатель вакуум-насоса.
Наиболее эффективная термовакуумная обработка молочных продуктов достигается при температуре порядка 70…80°C.

Это связано с тем очевидным фактом, что несоответственные вкус и запах создают легкокипящие жидкости. Для повышения эффекта дезодорации устанавливают последовательно две дезодорационные колонки. В ряде установок, в том числе и зарубежных, для улавливания стойких запахов в продукт при небольших давлениях инжектируют пар. При этом продукт поступает в смесительную камеру, где создается небольшой вакуум. Здесь молочный продукт нагревается и поступает в верхнюю часть циклонного отделителя. Выделившиеся пары и газы частично удаляются в эжекторный конденсатор, а частично дезодорированный продукт отводится в промежуточную емкость. Более полная дезодорация осуществляется во втором циклонном отделителе, работающем аналогично.

В вакуумный дезодоратор для молока и молочных продуктов (рис. 4.17) предварительно нагретый продукт подается в перфорированную камеру с отражателем. В вакуум-камере поддерживается разряжение (50…60 кПа) в результате чего продукт вскипает. Вторичный пар и выделившиеся газы удаляются из камеры с помощью вакуум-насоса. Откачивается продукт специальный насосом.

Установка, представленная на рис. 4.17, может применяться как в комплектах технологического оборудования, так и самостоятельно.



<предыдущая страница | следующая страница>


Технологическое оборудование традиционное и специальное технологическое оборудование предприятий пищевой промышленности

Зав кафедрой "Процессы, машины и аппараты химических производств" Кузбасского государственно технического университета д-р техн наук проф. П. Т. Петрик

1922.73kb.

02 09 2014
13 стр.


Г. Киев, Украина

Казахстанская международная выставка "Продукты питания, напитки, упаковка и оборудование для пищевой промышленности"

27.42kb.

09 09 2014
1 стр.


Семинар «Организационно-технологическое обеспечение единого государственного экзамена в 2012 году»

Фгбу «Федеральный центр тестирования» под руководством Федеральной службы по надзору в сфере образования и науки 21 – 23 марта 2012 года проводит семинар «Организационно-технологич

76.41kb.

16 12 2014
1 стр.


Аннотация рабочей программы

«Конструкторско-технологическое обеспечение автоматизированных машиностроительных производств» профиль «Металлообрабатывающие станки и комплексы»

18.85kb.

27 09 2014
1 стр.


Ооо «Химторг» 603040 Россия Нижний Новгород

Разработка, производство, поставка и технологическое сопровождение биоразлагаемых очищающих средств

37.38kb.

25 12 2014
1 стр.


Лабораторная работа №7 дата Выяснение условия равновесия рычага. Оборудование

Оборудование: штатив с закреплённой на нем осью, рычаг, набор грузов, динамометр, линейка

52.38kb.

08 10 2014
1 стр.


Кроссворд Вопросы Ими питаются рыбы и огромные морские звери

Оборудование. Карта доска, таблицы, предметные картинки, мультимедийное оборудование для демонстрации слайдов

68.55kb.

14 10 2014
1 стр.


Лекция №9 Сетевое оборудование

Сетевые адаптеры – это сетевое оборудование, обеспечивающее функционирование сети на физическом и канальном уровнях

237.73kb.

13 10 2014
1 стр.