Перейти на главную страницу
i *, (1.26)
Если же i *, то логичен вывод, что значение ai может рассматриваться как отличная от нуля оценка i-го коэффициента модели, и, таким образом, влияние фактора хi на переменную у целесообразно признать значимым.
Если фактор хi признается незначимым, то его “целесообразно”* удалить из модели. Эта операция приводит к уменьшению общего количества независимых переменных в модели.
Таким образом, можно предложить следующую поэтапную процедуру построения окончательно варианта модели на основе апостериорного подхода:
1. В исходный вариант модели включаются все факторы, отобранные в ходе содержательного анализа проблемы. Для этого варианта рассчитываются значения оценок коэффициентов модели, их среднеквадратические ошибки и значения критериев Стьюдента (выражение (1.25)).
2. Из модели удаляют незначимый фактор, характеризующийся наименьшим значением i (при условии, что i *), и таким образом формируют новый вариант модели с уменьшенным на один числом факторов. Заметим, что в модели может быть несколько незначимых факторов. Однако все их одновременно удалять не следует. Возможно, что незначимость большинства из них обусловлена влиянием “наихудшего” из незначимых факторов и на следующем шаге расчетов эти факторы окажутся значимыми.
3. Процесс отбора факторов можно считать законченным, когда остающиеся в модели факторы являются значимыми, Если полученный вариант модели удовлетворяет и другим критериям ее качества, то процесс построения модели можно считать завершенным в целом.
В противном случае целесообразно попытаться сформировать другой альтернативный вариант модели, отличающийся от предыдущего либо составом факторов, либо формой их взаимосвязи с зависимой переменной у.
Здесь сразу следует отметить, что каждый из этих подходов имеет свои преимущества и недостатки.
“Априорный” путь отбора факторов не обладает достаточной обоснованностью. Он в большей степени использует “прямые” количественные индикаторы “силы” взаимосвязей между рассматриваемыми величинами и не принимает во внимание в полной мере особенности комплексного влияния независимых факторов на переменную уt, т. е. своеобразные эффекты “эмерджентности” такого влияния. Этот эффект выражается в том, что совокупное воздействие нескольких факторов на переменную уt может значительно отличаться от суммы воздействий каждого из них именно в силу наличия внутренних взаимосвязей между независимыми переменными.
Вместе с тем использование априорного подхода часто позволяет уточнить некоторые предварительные альтернативные варианты наборов независимых факторов, проверить исходные предпосылки модели относительно правильности выбора формы взаимосвязей между ними.
“Апостериорный” подход к отбору факторов на первый взгляд является более предпочтительным как раз из-за того, что целесообразность включения каждого из факторов в эконометрическую модель определяется на основании всего комплекса взаимосвязей между вошедшими в модель переменными. Однако, когда общее количество факторов достаточно велико, то нет никаких гарантий, что множество несущественных, а то и ложных взаимосвязей между ними не будет превалировать над основными. В результате может оказаться, что в числе первых кандидатов на исключение будут “названы” наиболее важные, значимые с точки зрения влияния на переменную уt факторы. Поэтому в сложных случаях, т. е. при наличии большого числа отобранных для включения в модель на этапе содержательного анализа факторов, специалисты рекомендуют сочетать при формировании их “оптимального” состава оба подхода – априорный и апостериорный.
Согласно этим рекомендациям с помощью методов “априорного” отбора, используя при этом и содержательный анализ, формируются альтернативные варианты включаемых в модель наборов факторов. Далее с помощью методов “апостериорного” отбора эти наборы уточняются и соответствующие им варианты моделей сопоставляются по ряду характеристик их качества. Предполагается, что лучший из вариантов модели содержит и “оптимальный” набор факторов.
В результате процедура отбора факторов в эконометрическую модель превращается в перебор некоторого множества их приемлемых сочетаний, сформированных на базе “априорного” подхода.
Перебирая различные варианты составов независимых факторов, рассматривая возможные виды их взаимосвязей с зависимой переменной, исследователь формирует и разные варианты (модификации) эконометрической модели для описания рассматриваемых процессов. В этом случае возникает проблема выбора “оптимального” или наиболее “рационального” среди них. Обычно эта проблема решается на основе аналитического сопоставления статистических характеристик качества построенных вариантов, рассчитываемых уже при известных значениях оценок их параметров.
Особенности формирования основных из этих характеристик и принципы их использования при определении лучшего варианта модели рассмотрены в разделе 1.4.
Здесь следует отметить, что основным условием высокого “качества” модели является обоснованность “математической формы функционала f(a, xt ), как по составу включенных в него независимых переменных, так и по виду их взаимосвязей с зависимой переменной уt, в совокупности определяющих причины ее изменчивости. В этой связи, новая информация, появившаяся после построения функционала f(a, xt), позволяет установить, насколько удалось реализовать это условие на практике.
Отметим основные подходы к оценке “качества” эконометрических моделей.
Ведущая роль при определении характеристик качества эконометрической модели принадлежит ряду ее “выборочной” ошибки еt, t =1, 2,..., Т, который формируется с использованием найденных оценок ее параметров как
где – расчетное значение переменной у в момент t, определенное в общем случае как = f (a, xt ) после подстановки в функцию f (a, xt ) значений оценок параметров a0, a1,..., an и известных значений независимых переменных хit, i=1, 2,..., n, t=1, 2,..., Т. Например, для линейной модели (1.2) значения определяются на основании следующего выражения:
В этой связи отметим, что для каждого набора оценок параметров a0, a1, a2,... того или иного варианта модели, описывающей рассматриваемый процесс, рассчитывается “свой” ряд ошибки et, t=1, 2,..., Т, который можно интерпретировать как ряд оценок ее истинных, но неизвестных значений t (см. (1.1)).
На первый взгляд, соответствие модели свойствам процесса и точность его аппроксимации малоразличимые между собой понятия. Вместе с тем, в их основе лежат различные представления о мерах адекватности модели и процесса. С использованием методов построения многочленов, например, проходящих через заданные точки (задача интерполяции), можно подобрать такое уравнение f(a, xt ), что его значения в точках t=1, 2,..., Т в точности совпадут с наблюдаемыми значениями зависимой переменной уt. Все значения ошибок в этом случае будут равны нулю еt=0, t=1, 2,..., Т. Однако это уравнение практически никогда не будет выражать общую тенденцию развития переменной уt, сформировавшуюся под влиянием независимых факторов хi, i=1, 2,..., n; ни в промежутках между их зафиксированными в моменты t=1, 2,..., Т значениями, ни тем более в прошедшие и будущие периоды времени (см. рис. 1.3). Уравнение f (a, xt ) в этом случае будет выражать тенденцию интерполирующего многочлена, а не реального процесса уt.
Выражая уравнением f (a, xt) общие закономерности процесса уt, практически невозможно добиться совпадения его значений и наблюдаемых уровней зависимой переменной уt в п-мерной точке xt, вследствие того что, как было отмечено ранее, этот функционал не учитывает второстепенные причины изменчивости переменной у, исходная информация не точно отражает рассматриваемые явления и т. п. Однако, если вид функционала f(a, xt) в целом соответствует общим закономерностям изменчивости переменной уt, на интервале t=(1, Т), то можно надеяться, что это соответствие имело место и в прошлом (т. е. при t0), и на интервалах (t, t+1) и, что более важно, сохранится и в будущем (при tТ+1). Это является “определенной гарантией” того, что использование функционала f(a, xt) в решении задач управления и прогнозирования процесса уt не приведет к серьезным ошибкам.
кривая, соответствующая функционалу, опи-
сывающему общую тенденцию переменной уt
измеренные значения переменной уt
кривая, соответствующая интерполирующему
функционалу f ( a , xt ),
В общем случае “качество” эконометрической модели оценивается по двум группам характеристик, хотя, как это будет показано далее, предполагаемая группировка не вполне однозначна, поскольку, во-первых, характеристики каждой из групп часто имеют двойное назначение, а, во-вторых, многие из них взаимосвязаны друг с другом. В первую из групп включим показатели, критерии, выражающие “степень” соответствия построенной модели основным закономерностям описываемого ею процесса. Во вторую – показатели и критерии, в большей степени оценивающие точность ее аппроксимации наблюдаемых значений процесса уt .
В этой связи следует отметить, что к критериям первой группы могут быть отнесен и критерий Стьюдента, используемый для оценки значимости влияния каждого из факторов хi, i=1, 2,..., n, на зависимую переменную уt (см. раздел 1.3).
Соответствие эконометрической модели описываемому ею процессу уt в значительной степени может быть установлено на основе анализа свойств рассчитанного ряда ошибки et, t=1, 2,..., Т*. Если вариант модели “верно” отражает основные тенденции процесса уt , то можно ожидать, что значения ошибки в определенной степени случайны, их свойства близки к свойствам процесса “белого шума”. Если же тенденция, закономерности процесса уt учитываются моделью не в полной мере (в модель не включены какие-либо существенные с содержательной точки зрения факторы, выбрана форма функционала f(a, xt), не адекватная характеру взаимосвязей между рассматриваемыми переменными и т. п.), то в ряду ошибки обычно появляется некоторая закономерность, свидетельствующая об утрате свойства ее “случайности”. Заметим, что “неслучайный” характер фактической ошибки модели et может быть предопределен и неверно выбранным методом оценки параметров модели.
Забегая вперед, отметим, что среди методов оценки параметров линейных эконометрических моделей наибольшее распространение получили метод максимального правдоподобия, метод наименьших квадратов и метод моментов. Каждый из них используется при вполне определенных исходных предпосылках относительно свойств ошибки модели t. Например, классические варианты этих методов используются в предположении, что ошибки совпадают со свойствами процесса “белого шума” (нулевое среднее, конечная дисперсия, отсутствие автокорреляционных связей). При этом “метод максимального правдоподобия” предполагает известным закон распределения ошибки. Чаще всего используется предположение о “нормальности” ее распределения. В этой связи построенная с использованием метода максимального правдоподобия модель будет считаться адекватной рассматриваемому процессу, если свойства фактической ошибки et, определенной согласно выражению (1.27), будут не слишком сильно отличаться от предполагаемых свойств ошибки t (“белого шума” с нормальным распределением).
Метод наименьших квадратов не выдвигает столь жестких требований к закону распределения ошибки. Согласно ему оценки параметров моделей определяются исходя из критерия минимума суммы квадратов ошибки. В такой ситуации модель, построенная с использованием данного метода, будет считаться адекватной рассматриваемым процессам, если ее ошибка по своим свойствам идентична “белому шуму”.
Если в отношении ошибки эконометрической модели t выдвигаются предположения, что ее свойства отличны от свойств “белого шума”, то для оценки параметров модели обычно используются так называемые обобщенные модификации данных методов.
Отличие ошибки модели от “белого шума” может выражаться, например, непостоянством ее дисперсии на различных участках интервала t=1, 2,..., Т; наличием взаимосвязи между ее соседними значениями, выражаемыми, например, уравнением следующего вида t =t–1+t, где t – новая ошибка, по своим свойствам близкая к процессу “белого шума” и т. п.
Однако на практике для моделей многих типов такие свойства ошибки модели априорно предвидеть обычно не представляется возможным. Их можно установить, только анализируя свойства фактической ошибки et, полученной для моделей, оценки коэффициентов которых определены с использованием “классических” методов оценивания.
Таким образом, наличие или отсутствие свойства “случайности” в ряду выборочной ошибки модели et, t =1, 2,..., Т; в определенной мере указывает на “соответствие” или “несоответствие” модели описываемому ею процессу у. В том случае, когда ошибка модели “неслучайна”, может быть рекомендовано уточнить рассматриваемый вариант модели, выбрать более подходящий для данной ситуации метод оценки ее параметров.
Как было отмечено выше, “неслучайность” ошибки может иметь различный характер. Наиболее часто она выражается наличием автокорреляционной связи между соседними ее значениями, тенденциями, характеризующими изменения их квадратов, т. е. тенденциями в ряду t2, t=1, 2,..., Т и других ее производных. Для выявления “неслучайности” в ряду ошибки модели обычно используют специфические тесты, многие из которых будут рассмотрены в последующих главах учебника применительно к моделям соответствующих типов. Здесь же в качестве примера опишем особенности использования для этих целей достаточно универсального теста (критерия) Дарбина-Уотсона. Он наиболее широко применяется в эконометрических исследованиях вследствие своей простоты, хотя и не обладает существенной эффективностью (достоверностью). Тест Дарбина-Уотсона обычно используется для установления факта наличия автокорреляционной зависимости первого порядка в ряду ошибки t, т. е. между соседними ее значениями, t и t+1, t=1, 2,..., Т. Обычно соседние значения ошибки связаны более сильной зависимостью, чем значения t и t+2, t и t+3 и т. д. Вследствие этого отсутствие автокорреляционной связи между рядами значений выборочной ошибки et и et–1, t=1, 2,..., Т–1; позволяет с большой степенью уверенности утверждать, что в ряду истинной ошибки модели t отсутствуют вообще какие-либо автокорреляционные взаимосвязи.
Значение критерия Дарбина-Уотсона рассчитывается по следующей формуле
Раскрывая квадрат в числители выражения (1.29), получим:
где r1 – коэффициент автокорреляции первого порядка ошибки et, т. е. корреляции между рядами et и et+1.
Из выражения (1.30) непосредственно вытекает, что
0 d 4. (1.31)
Значение d=0 соответствует случаю, когда между рядами et и et+1 существует строгая положительная линейная зависимость, т. е. r1=+1, и значение d=4 соответствует строгой отрицательной связи, r1 =–1. Если ряды et и et +1 независимы, то r1 =0 и d=2.
Точки d=0; 2; 4 и определяют границы критерия Дарбина-Уотсона, в пределах которых гипотеза о наличии автокорреляции первого порядка в последовательности ошибок либо принимается (в областях близких к 0 или 4), либо отвергается (в области d=2), либо решение по данному критерию остается неопределенным (в промежутках между отмеченными областями). Иными словами, на отрезке [0,4] выделяются четыре промежуточные точки, таким образом, что 0d1d22d3d44. Если расчетное значение критерия Дарбина-Уотсона находится на отрезках [0, d1] , [d4,4], то гипотеза о наличии автокорреляции первого порядка в ряду ошибок модели принимается, если расчетное значение d находится в интервале [d2, d3], – то отвергается. Значения d, приходящиеся на полуинтервалы [d1, d2] и [d3, d4], не позволяют сделать однозначного суждения по данной гипотезе. В последнем случае необходимо проводить более глубокий анализ зависимостей между значениями ошибки et, t=1,2,..., Т.
Другую группу критериев, в большей степени направленных на выявление степени точности аппроксимации функционалом f(a, xt ) наблюдаемых значений зависимой переменной уt, образуют широко используемые в статистике и эконометрике коэффициент множественной корреляции R, коэффициент детерминации D, критерий Фишера F.
Здесь следует отметить, что общепринятой в статистике мерой точности “аппроксимации” является дисперсия (в нашем случае дисперсия модели). Ее значение на практике обычно определяется на основании следующей формулы:
где =f (a, xt) – рассчитанные на основании уравнения модели f(a, xt) значения зависимой переменной, Т– количество измерений, п+1 – число параметров модели.
Однако значение дисперсии не отражает многих существенных аспектов качества модели и, кроме того, оно не очень пригодно для целей содержательного анализа.
Несложно заметить, что величина ошибки тесно связана с уровнем зависимой переменной у, и в этой связи она имеет “абсолютное” содержание. В то же время “точность” в большей степени относительна. Поэтому меньшее значение дисперсии еще не свидетельствует о более высоком “качестве” модели, ее аппроксимирующих возможностях. Большая дисперсия может выражать лишь более высокие уровни независимой переменной, а не ухудшение точности ее аппроксимации построенной моделью.
Здесь следует отметить, что и “относительность” ошибки может рассматриваться в двух аспектах. Во-первых, по отношению к уровню переменной у, а, во-вторых, – к некоторому уже установленному “эталону” точности. Как раз эти аспекты в большей степени и учитывают указанные критерии и коэффициенты.
Коэффициент множественной корреляции показывает степень приближения расчетных (по построенной модели) значений зависимой переменной (a, xt) к действительным ее значениям уt . Величина коэффициента множественной корреляции меняется в пределах от нуля до единицы (0 R1). Значения R, близкие к нулю, свидетельствуют о том, что расчетные значения плохо аппроксимируют значения уt. Если R близок к единице, то это означает, что модель хорошо аппроксимирует исходный ряд значений уt, t=1, 2,..., T.
Значения коэффициента детерминации также находятся на отрезке [0,1], 0D1. Его конкретная величина показывает долю изменчивости переменной у, объясняемую включенными в модель факторами хi, i=1, 2,..., n. Например, если D=0,81, то это означает, что включенные в модель переменные объясняют 81% изменчивости переменной уt, а остальная ее изменчивость объясняется неучтенными в модели причинами.
Значения коэффициентов множественной корреляции и детерминации рассчитываются на основании следующего выражения*:
Обоснование целесообразности использования коэффициента детерминации при определении качества построенной эконометрической модели заключается в следующем. “Удачная“ модель должна “объяснять” основные закономерности изменчивости зависимой переменной уt. Количественной мерой этой изменчивости в статистике принято считать показатель, рассчитываемый на основании следующей формулы:
Заметим, что разница представляет собой отклонение значения уt от среднего уровня этой переменной, а общая изменчивость, таким образом, выражается в виде суммы квадратов всех таких отклонений. После построения модели и определения на ее основании “расчетных” значений , каждое из таких отклонений можно представить в виде суммы двух составляющих
выражает сумму квадратов ошибки модели, т. е. часть изменчивости переменной уt, необъясненную построенной моделью, а второе слагаемое – часть изменчивости переменной уt , которую построенная модель объяснила.
Разделив левую и правую части выражения (1.36) на , получим
Из последнего выражения непосредственно следует (1.33), т. е.
Таким образом, если модель абсолютно точно соответствует исходному ряду зависимой переменной уt, т. е. расчетные значения f(a, xt) равны уt для всех t =1, 2,..., T, то D=R=1.
В тех случаях, когда модель не может ни в какой мере объяснить изменчивость переменной уt, имеем R=D=0. При линейной форме зависимости f(a, xt) это происходит, например, в тех случаях, когда значения уt равномерно распределяются вокруг линии параллельной оси Х (см. рис. 1.4 (а, б)), что влечет за собой равенство , t=1, 2,..., T.
Из изложенного выше следует, что высокие значения переменных D и R ассоциируются с хорошей степенью аппроксимации построенной эконометрической моделью f(a, xt) исходного (заданного) ряда значений зависимой переменной уt, t=1, 2,..., T, а низкие значения – с плохой аппроксимацией. Вместе с тем следует иметь в виду, что причины плохой аппроксимации могут быть разные. В одних случаях это происходит из-за неверного выбора объясняющих (независимых) переменных, в других – из-за неправильно подобранной формы уравнения модели.
фактические значения у
фактические значения у
Критерий Фишера (F-критерий) также используется для определения надежности всей модели путем сопоставления ее меры ошибки с величиной меры рассеяния переменной уt относительно Величина этого критерия определяется по формуле
Целесообразность использования критерия Фишера можно обосновать, заменив в выражении (1.39) показатель R2 на его модификацию – скорректированный квадрат коэффициента множественной детерминации , рассчитываемый с учетом замены суммы квадратов ошибки и изменчивости переменной уt на соответствующие дисперсии. Значение рассчитывается согласно следующей формулы:
При этом представляет собой дисперсию ошибки et (см. (1.32)), где Т–п–1 – число степеней свободы, учитываемое при ее определении (Т– число измерений, п+1 – количество связанных параметров-коэффициентов модели); – дисперсия переменной уt, Т–1 – число степеней свободы при одном связанном параметре .
На основании (1.33) и (1.40) взаимосвязь между квадратами коэффициентов множественной корреляции R2 и можно представить в виде следующего соотношения:
Скорректированный коэффициент как мера качества построенной модели имеет определенные преимущества по сравнению с его предшественником – коэффициентом R2. В частности, из выражения (1.40) вытекает, что включение в модель независимых факторов, малозначащих с точки зрения объяснения изменчивости переменной уt, может вести к уменьшению значения (см. числитель дробной части (1.40)). В то же время показатель R2 не чувствителен к изменению количества таких переменных.
Здесь необходимо отметить, что критерий Фишера может рассматриваться и в качестве “меры” обоснованности включения в эконометрическую модель всей совокупности независимых переменных. В этом случае его можно отнести и к критериям первой группы, характеризующим степень соответствия построенной модели исследуемому процессу уt.
Критерий Фишера в такой ситуации рассматривается как своего рода тест при проверке гипотезы, что ни один из независимых факторов не играет никакой роли в объяснении изменчивости переменной уt или, что то же самое, все коэффициенты при независимых факторах модели равны нулю (a1=0, a2=0,... , aп =0) (см. раздел (2.2)). В соответствии с этим отношение R2/п в выражении (1.39) представляет собой среднюю долю объясненной изменчивости переменной уt, приходящуюся на один независимый фактор, а (1–R2)/(Т–п–1) – среднюю долю необъясненной изменчивости переменной уt, в расчете на одну степень свободы.
При слабом влиянии независимых факторов на переменную уt (т. е. при ai , i=1,2,..., n) значение R2, как и величина критерия F стремится к нулю, и, наоборот, с увеличением R2 численное значение F также возрастает. Заметим, что показатель F является случайной величиной, представляющей собой отношение двух дисперсий. Эта величина распределена по закону Фишера с п и Т–п–1 степенями свободы (F(п, Т–п–1)). Вследствие этого на практике проверка значимости коэффициентов модели с использованием критерия Фишера состоит в сопоставлении его расчетного значения, определенного для построенного варианта модели по формуле (1.34), с табличным значением F*(п, Т–п–1), соответствующим заданному уровню доверительной вероятности р* (вероятности ошибки первого рода 1–р*) и известным степеням свободы п и Т–п–1.
Если оказывается , что
Критерий Фишера можно использовать и при сравнении качества (точности описания исходного процесса уt) двух различных альтернативных вариантов модели. В данном случае его величина рассчитывается по формуле
где =f1(a1, xt1), =f 2(a2, xt2) – расчетные значения переменной у, полученные на основе первого и второго вариантов моделей соответственно, различающиеся, быть может, формой зависимости f и количеством факторов х; n1 и n2 – количества факторов в первом и втором вариантах соответственно.
Критерий (1.42) является двухсторонним. Особенности его использования состоят в следующем. Если выполняется соотношение
то рассматриваемые альтернативные варианты модели признаются равнозначными с точки зрения точности описания процесса уt.
Если
то выбор следует сделать в пользу первого варианта модели, а если
то – в пользу второго.
F*(1, 2) – табличное значение критерия Фишера, выбранное для заданного уровня доверительной вероятности р* и числе степеней свободы 1=Т–n1–1 и 2=Т–n2–1.
В заключение данного раздела еще раз обратим внимание на определенные содержательные и количественные взаимосвязи между критериями и показателями качества эконометрической модели различных групп. Например, отметим, что появление автокорреляционных взаимосвязей у значений ошибки, вообще говоря, делает приведенные выше выражения критериев Фишера, коэффициента детерминации, множественных коэффициентов корреляции и т. п. некорректными. Это обусловлено тем, что используемая при расчете их значений сумма квадратов ошибки не может рассматриваться как “мера точности аппроксимации” заданного ряда значений уt, поскольку не учитывает, например, автокорреляционные связи между разновременными ошибками et и et+i, i=1, 2,...* Критерии Стьюдента и Фишера, коэффициенты детерминации и множественной корреляции, отнесенные к разным группам, часто используются совместно при обосновании выбора варианта эконометрической модели. Это связано с тем, что каждый из включенных в модель факторов, как правило, объясняет некоторую долю изменчивости зависимой переменной уt, пусть даже и небольшую. Вследствие этого, когда независимых факторов не слишком много и между ними не наблюдается сильных взаимосвязей, то исключение из их состава даже малозначимого с точки зрения критерия Стьюдента фактора объективно уменьшает количество информации, объясняющей изменчивость уt. Это, в свою очередь, влечет за собой уменьшение значений характеристик D, R и F. Может возникнуть такая ситуация, когда, удалив на очередном шаге незначимый фактор, исследователь получает менее удачный по этим показателям вариант модели. Если нет других альтернативных ее вариантов, то возникает проблема выбора между “ненадежным” вариантом модели со значимыми факторами и более надежным вариантом, у которого некоторые из независимых переменных незначимы. На практике обычно выбор делается в пользу более “удачной” модели, поскольку более точное описание процесса уt в эконометрике является и более предпочтительным по сравнению с решением задачи установления перечня значимых по степени влияния на переменную уt факторов.
Таким образом, этапы формирования модели (обоснование формы функционала, состава независимых переменных) и оценки ее качества в значительной степени взаимосвязаны между собой. Для них, как правило, нельзя установить жесткую очередность. Часто информация, полученная на “более поздних этапах” заставляет пересматривать итоги предыдущих. Заметим также, что важную роль на всех этих этапах играет содержательная сторона проблемы. Не подкрепленные результатами содержательного анализа и основанные только на “хороших” количественных критериях варианты эконометрических моделей часто являются с практической точки зрения бесполезными, бессодержательными “аппроксимациями”.
Вместе с тем качество модели в значительной степени зависит от того, насколько “удачны” оценки коэффициентов модели ai , i=0,1,... п. Они играют, пожалуй, основную роль при обосновании ее “качества”, поскольку на основе их значений непосредственно определяется одна из важнейших составляющих модели, характеризующих ее качество, – выборочная ошибка.
Основные подходы к обоснованию “качества” оценок параметров эконометрической модели рассмотрены в следующем параграфе учебника.
Эти оценки являются случайными величинами. Их случайный характер можно интерпретировать следующим образом. Значения построенного функционала f(a, xt)= , определенные при известном наборе оценок a0, a1,..., an, можно рассматривать как оценки, аппроксимирующие наблюдаемые значения зависимой переменной уt. Качество этой аппроксимации, а, следовательно, и качество параметров a0, a1,..., an увязывается со свойствами и характеристиками случайной ошибки et=уt – . Таким образом, каждой выборочной последовательности ошибки et, t=1,2,..., Т; ставится в соответствие “свой” набор параметров и наоборот. Это и позволяет говорить о каждом из таких наборов как о выборке из некоторого множества наборов оценок параметров 0, 1,..., n, соответствующей определенному методу оценивания.
В этой связи еще раз отметим, что “истинным” значениям параметров 0, 1,..., п должен соответствовать и “истинный” ряд ошибки модели t, определенный как
t=уt –f (, xt). (1.46)
Поскольку вектор истинных значений параметров =(0, 1,..., п) неизвестен, то рассчитать значения t, t=1,2,..., Т; на основании выражения (1.46) на практике не представляется возможным. Однако при известных оценках коэффициентов a0, a1 ,..., an можно определить “оценку” ошибки , в качестве которой в данном случае выступают значения «фактической» ошибки et=уt–f(a, xt), t=1,2,..., Т, полученные из выражения (1.46) при подстановке в функционал f оценок параметров. Ряд ошибки et при этом также рассматривается как “выборочная ошибка”.
Полученную любым методом оценку ai коэффициента эконометрической модели i можно рассматривать как выборочную случайную величину, представленную в виде суммы ее истинного значения i и случайной ошибки ai , i=0,1,..., п.
При этом, хотя истинное значение i неизвестно, однако, как это будет показано далее, некоторые характеристики ошибки ai и ее свойства обычно удается определить в процессе получения оценки ai .
В такой ситуации хорошее качество оценок параметров модели, полученных с использованием того или иного метода (о котором можно судить на основании характеристик качества их ошибок), является одним из важнейших условий построения “удачной” эконометрической модели. Напомним, что другим таким условием является правильное отображение основных закономерностей рассматриваемых процессов с учетом взаимосвязей между ними. Рассмотрим основные подходы к определению уровня качества оценок параметров эконометрических моделей более подробно.
Теория статистического оценивания качество оценок определяет по свойствам несмещенности, эффективности, асимптотической несмещенности и асимптотической эффективности, состоятельности и некоторым другим. Напомним, что оценка является несмещенной, если истинное значение параметра можно рассматривать как ее математическое ожидание или, иначе, математическое ожидание ошибки оценки ai должно быть равно нулю:
Часто свойство несмещенности выполняется лишь с некоторой степенью «приблизительности» при достаточно больших объемах выборочных данных (при большом числе измерений Т), в пределе при Т. В этом случае говорят, что оценки являются асимптотически несмещенными. Иногда асимптотическая несмещенность рассматривается в “вероятностном” смысле, т. е. предполагается, что для произвольно малых положительных чисел и , в общем случае зависящих от Т, существует такой объем исходных данных Т0, что для всех ТТ0 имеет место следующее неравенство:
или
где – вероятность события, заключенного в фигурные скобки. Выражение (1.50) означает, что предел по вероятности последовательности есть . Оценки, обладающие таки свойством, называют состоятельными. Свойство состоятельности в литературе обычно выражают символом
Обратим внимание на определенные различия, связанные с использованием в эконометрическом анализе свойств несмещенности, в одной стороны, и асимптотической несмещенности, состоятельности, с другой. В эконометрических исследованиях значение Т всегда конечно, и часто не очень велико, что иногда определяется отсутствием необходимой информации. При конечных объемах выборки желательно выполнение для рассматриваемых характеристик свойств несмещенности и эффективности. Однако в ряде случаев доказать наличие у них таких свойств не представляется возможным, но можно показать, что они обладают свойствами асимптотической несмещенности, эффективности и состоятельности. Наличие таких асимптотических свойств у характеристик обычно в эконометрике является свидетельством более высокого их качества, по сравнению с другими альтернативными вариантами таких характеристик, которые этими свойствами не обладают.
Кроме того, “асимптотические” свойства могут рассматриваться как преимущество “при прочих равных условиях”, в том смысле, что из двух оценок более предпочтительной является та из них, которая получена на основе большей по объему выборки (если по эффективности эти оценки не различимы)*.
Однако в этом случае следует проявлять определенную осторожность. Дело в том, что при конечных объемах выборки интуитивно предполагается, что, чем больше значение Т, тем ближе полученная оценка параметра к его истинному значению и тем меньше ее ошибка. Но увеличение объема выборки ведет к уменьшению величины смещения только в том случае, если закономерности рассматриваемых процессов на “старом” и “добавленном” временных интервалах полностью идентичны (однородная выборка) и, таким образом, построенные на соответствующей этим интервалам информации модели будут малоразличимы.
В эконометрике часто приходится сталкиваться с такой ситуацией, когда на отдельных временных участках закономерности процессов различаются. Это может быть вызвано, например, начавшимся воздействием на зависимую переменную уt нового фактора, изменением характера взаимосвязей между рассматриваемыми переменными в связи с изменением их масштабов (действие диалектического закона перехода “количества” в “качество”) и по другим причинам. В этом случае увеличение числа измерений не ведет к автоматическому “росту качества” оценок параметров модели.
Важнейшими характеристиками, которые учитываются при изучении свойств асимптотической несмещенности и состоятельности, являются асимптотическое математическое ожидание и асимптотическая дисперсия.
Асимптотическое математическое ожидание параметра ai определяется как предел последовательности оценок его математических ожиданий, рассматриваемых при неограниченно возрастающем объеме исходных данных, т. е. количестве измерений Т:
где – оценка параметра, полученная при Т измерениях.
Асимптотическая дисперсия определяется как предел следующей величины:
где i – истинное значение этого параметра.
Выражение (1.53) сформировано с учетом того факта, что оценки , полученные на основе различных методов, могут иметь в пределе при Т одинаковую нулевую дисперсию. Например, дисперсия выборочного среднего равна /Т, а выборочной медианы – /2Т и при Т0 эти величины неразличимы. Вместе с тем, дисперсия случайной величины равна а у показателя дисперсия равна /2, где – дисперсия генеральной совокупности, а и т – ее выборочное среднее и выборочная медиана. Из сопоставления этих значений видно, что выборочное среднее более “качественная” (асимптотически эффективная) оценка, чем медиана. Таким образом, выражение (1.53) является более наглядным при сравнении эффективности различных оценок параметров при увеличении Т.
Точно также рассмотренные свойства для конечных и бесконечных выборок распространяются и на совокупность оценок параметров, представимых в виде вектора-строки a=(a0, a1,..., an). Заметим, что в этом случае вместо дисперсии мы имеем дело с ковариационной матрицей этого вектора Cov(a), определяемой следующим выражением:
Заметим, что где – абсолютная величина ошибки оценки ai (Т ) в предположении, что Т.
Таким образом, если и , т. е. оценка является асимптотически несмещенной, то из (1.57) непосредственно вытекает, что, начиная с некоторого значения Т0 для всех ТТ0 можно найти малое значение , удовлетворяющее (1.57). Из этого следует, что plim(ai (Т ))=i, и такая оценка является и состоятельной.
Обратное утверждение, вообще говоря неверно, т. е. состоятельные оценки не всегда являются асимптотически несмещенными. Однако при выполнении некоторых дополнительных условий установлено, что состоятельные оценки обладают и свойствами асимптотической несмещенности. В частности, если оценка ai несмещенная при конечном объеме выборки и состоятельная, то она обладает и свойством асимптотической несмещенности. Такой же вывод справедлив и в том случае, когда известно, что существует асимптотическое математическое ожидание состоятельной оценки и предел ее дисперсии при Т равен нулю, т. е.
Заметим также, что состоятельность является “более удобным” при анализе свойством, чем асимптотическая несмещенность, поскольку оно часто автоматически сохраняется при преобразованиях рассматриваемых переменных и некоторых операциях с ними. В частности, если f(a) – некоторая функция параметра a, то plim(f(a))=f(plim(a)). Например, plim(a2)=(plim(a)) 2.
Аналогичные свойства имеют место и при векторно-матричных вычислениях. Так, для произведения матриц, обратной матрицы справедливыми являются следующие соотношения:
(plimA–1)= (plimA)–1.
Часто “необоснованность” предпосылок обусловлена тем обстоятельством, что в ходе анализа построенной модели не принимается во внимание “содержательная интерпретация” используемых данных. В связи с этим заметим, что обычно предположение о детерминированном характере независимых переменных хi, позволяет говорить о свойствах несмещенности и эффективности оценок параметров эконометрических моделей на конечных выборках (т. е. рассматривать проблемы наличия или отсутствия этих свойств у найденных оценок.
В том случае, если независимые переменные имеют случайный характер или при получении оценок параметров модели использовались так называемые “инструментальные” переменные – их заменители, то свойства полученных оценок уже имеют асимптотический характер. Иными словами, несмещенность и эффективность (если они имеют место) проявляются только на больших выборках.
В этой связи наиболее “популярными” методами оценки параметров линейных эконометрических моделей являются метод максимального правдоподобия и метод наименьших квадратов. Их “популярность” объясняется относительной простотой вычислений и высоким качеством получаемых оценок в смысле выполнения требований относительно их несмещенности, эффективности и состоятельности.
Торговое предприятие имеет сеть, состоящую из 12 магазинов, информация о деятельности которых представлена в таблице 1.1.
Номер магазинаГодовой товарооборот, млн. руб.Торговая площадь, тыс. м2 Среднее число посетителей в день, тыс. чел.119,760,248,25238,090,3110,24340,950,559,31441,080,4811,01556,290,788,54668,510,987,51775,010,9412,36889,051,2110,81991,131,299,891091,261,1213,721199,841,2912,2712108,551,4913,92
Требуется построить диаграммы рассеяния годового товарооборота (у) в зависимости от торговой площади (х1) и среднего числа посетителей в день (х2) и определить форму связи между результирующим показателем (у) и каждым из факторов (х1 и х2).
Задание 1.2
На основании информации, приведенной в табл. 1.1, построено двухфакторное уравнение годового товарооборота в зависимости от торговой площади магазина (х1) и среднего числа посетителей в день (х2), которое выглядит следующим образом:
Требуется:
1. Дать экономическую интерпретацию коэффициентов уравнений регрессии.
2. На основании данных табл. 1.1 рассчитать эмпирические коэффициенты эластичности годового товарооборота от торговой площади и от среднего числа посетителей.
3. На основании уравнений регрессии оценить частные коэффициенты эластичности годового товарооборота от торговой площади и от среднего числа посетителей.
На основании информации, представленной в табл. 1.4, построена производственная функция Кобба-Дугласа
где – валовый национальный продукт в t-м году (млрд. руб.), – накопление в t-м году (млрд. руб.), – среднегодовая численность занятых в t-м году (млн. чел.).
Таблица 1.4
Пери-одВНП, млрд. руб.Накопление, млрд. руб.Среднегодовая численность занятых, млн. чел.1337,765089,12354,071090,53363,377391,94385,783693,05405,690094,16426,396895,37438,3104096,18462,2111396,69486,7119097,510523,4127098,2
Требуется:
1. Определить предельные эффективности факторов и предельные нормы их замещения в каждой точке базисного периода.
2. Построить графики изоквант для 1 и 10 периодов.
Задание 1.4
На основании информации за 1970-1990 гг. для РСФСР определены парные коэффициенты корреляции у (среднедушевого потребления рыбы, кг) и следующих факторов: х1 (среднедушевого потребления мяса, кг), х2 (среднедушевого потребления молока , л), х3 (среднедушевого потребления растительного масла , кг), х4 (среднедушевого потребления яиц, шт.), х5 (среднедушевого потребления сахара, кг), х6 (среднедушевого потребления хлеба, кг), х7 (среднедушевого потребления картофеля, кг), х8 (среднедушевого потребления овощей, кг), х9 (базисного индекса реальных доходов населения, за единицу принят уровень 1970 г.), и х1 0 (среднедушевого потребления алкоголя, л). Построена матрица парных коэффициентов корреляции факторов. Соответствующая информация приводится в табл. 1.12.
Коэффициенты парной корреляциих1х2х3х4х5х6х7х8х9х10y0,840,430,830,850,87-0,82-0,690,700,850,19x11,000,590,930,970,83-0,98-0,840,850,970,04х20,591,000,470,480,13-0,53-0,210,420,520,36x30,930,471,000,070,92-0,97-0,900,950,99-0,11x40,970,480,071,000,91-0,98-0,880,900,980,13x50,830,130,920,911,00-0,87-0,780,860,900,20x6-0,98-0,53-0,97-0,98-0,871,000,88-0,92-0,98-0,10x7-0,84-0,21-0,91-0,88-0,780,881,000,88-0,91-0,03x80,850,420,950,890,86-0,92-0,881,000,930,10x90,970,520,990,980,91-0,98-0,910,931,000,07х100,04-0,36-0,110,130,20-0,10-0,030,100,071,00
Требуется отобрать факторы в модель путем пошагового наращивания их числа.
Указание. В качестве порогового значения парного коэффициента корреляции результирующего показателя и каждого из факторов взять 0,6 (1 =0,6), а порогового значения парного коэффициента корреляции факторов – 0,9 ( 2 = 0,9).
Задание 1.5
В 2001 г. европейское мясное лобби размышляет на тему, стоит ли оказать давление на правительства стран-членов ЕС, чтобы новые случаи заболевания губчатой энцефалопатией и болезнью Кройцфельда-Якоба не становились достоянием гласности. Безусловно, такое давление будет стоить недешево, и поэтому необходимо предварительно оценить полезность подобных действий. Оценивается зависимость уt (доли вегетарианцев среди населения t-й страны ЕС) от х1t (числа ставших известными случаев инфицирования коров губчатой энцефалопатией) и х2t (числа ставших известными случаев заболевания людей болезнью Кройцфельда-Якоба). Исследование проводится для Т=15 стран.
Результаты оценивания по МНК (в скобках даны стандартные отклонения оценок коэффициентов):
Требуется:
1. Проверить статистическую значимость коэффициентов уравнения при =0,05.
2. Определить, является ли константа значимо меньше 0,31.
3. Проверить совместную статистическую значимость переменных х1 и х2, если сумма квадратов ошибок составляет 0,0084, а дисперсия наблюдаемой переменной у – 0,0011.
Задание 1.6
Для классической линейной однофакторной модели нормальной регрессии требуется проверить гипотезу H0:0 =001=10 при уровне значимости =0,05.
1. Предлагается следующий способ тестирования. С помощью оценок a0 и a1 отдельно проверить гипотезы H01: 0=00 и H02: 1=10 при уровне значимости =0,05. Если отклоняется хотя бы одна из гипотез H01 или H02, то отклоняется и гипотеза H0. Что можно сказать об уровне значимости такого способа тестирования?
2. Предлагается такой же способ тестирования, как и в п. 1. Но гипотеза H0 отклоняется только тогда, когда одновременно отклоняются и гипотеза H01 и гипотеза H02. Что можно сказать об уровне значимости такого способа тестирования?
«Эконометрика» сөзі «экономика» және «метрика» (гректің «метрон» деген сөзінен шыққан). Бұл термин эконометриканың мазмұның ғылым ретінде қабылдайды
13 09 2014
1 стр.
Эконометрика позволяет найти количественное подтверждение либо опровержение того или иного экономического закона либо гипотезы. Одним из важнейших направлений эконометрики является
18 12 2014
1 стр.
Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления 080100. 62 специальности «Экономика» подготовки бакалавра, изучаю
18 12 2014
1 стр.
17 12 2014
12 стр.
18 12 2014
3 стр.
«Математические и статистические математической экономики и методы в экономике» эконометрики
06 10 2014
1 стр.
Финансовая эконометрика, взаимные и хедж-фонды, развивающиеся финансовые рынки, риск-менеджмент
14 09 2014
1 стр.
Создание эконометрического общества и институционализация эконометрического знания
17 12 2014
1 стр.