Перейти на главную страницу
Функция — одно из важнейших математических понятий. Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение переменной у.
Все значения независимой переменной образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.
Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл.
Способы задания функции:
1. аналитический способ (функция задается с помощью математической формулы;
2. табличный способ (функция задается с помощью таблицы)
3. описательный способ (функция задается словесным описанием)
4. графический способ (функция задается с помощью графика).
Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.
ОСНОВНЫЕ СВОЙСТВА ФУНКЦИЙ
Нуль функции – такое значение аргумента, при котором значение функции равно нулю .
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.
3. Возрастание (убывание) функции.
Возрастающая в некотором промежутке функция - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.
Функция у = f (x) называется возрастающей на интервале (а; b), если для любых x1 и x2 из этого интервала таких, что x1< x2 , справедливо неравенство f(x1)<f(x2).
Убывающая в некотором промежутке функция - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.
Функция у =f (x) называется убывающей на интервале (а; b), если для любых x1 и x2 из этого интервала таких, что x1< x2, справедливо неравенство f(x1)>f(x2).
Функция общего вида не является четной или нечетной (у = х2+х).
Свойства некоторых функций и их графики
1. Линейной функцией называется функция вида , где k и b – числа.
Графиком линейной функции у = kx + b (k ≠ 0) является прямая проходящая через точку (0; b) и параллельная прямой у = kx.
Прямая, не параллельная оси Оу, является графиком линейной функции.
Свойства линейной функции.
1. При k > 0 функция у = kx + b возрастающая в области определения.
2. При k < 0 функция у = kx + b убывающая в области определения.
3. Множеством значений функции y = kx + b(k ≠ 0) является вся числовая прямая, т.е. множество R действительных чисел.
При k = 0 множество значений функции у = kx + b состоит из одного числа b.
3. При b = 0 и k = 0 функция не является ни четной, ни нечетной.
При k = 0 линейная функция имеет вид у = b и при b ≠ 0 она является четной.
При k = 0 и b = 0 линейная функция имеет вид у = 0 и являете одновременно четной и нечетной.
Графиком линейной функции у = b является прямая, проходящая через точку (0; b) и параллельная оси Ох. Заметим, что при b = 0 график функции у = b совпадаете осью Ох.
5. При k > 0 имеем, что у > 0, если и у < 0, если
. При k < 0 имеем, что у > 0, если
и у < 0, если
.
Область определения этой функции - множество R действительных чисел.
Придавая переменной х несколько значений из области определения функции и вычисляя соответствующие значения у по формуле y = x2 , изображаем график функции.
График функции y = x2 называется параболой.
Свойства функции у = х2.
1. Если х = 0, то у = 0, т.е. парабола имеет с осями координат общую точку (0; 0) - начало координат.
2. Если х ≠ 0, то у > 0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции у = х2 является промежуток [0; + ∞).
4. Если значения аргумента отличаются только знаком, то значения функции равны, т.е. парабола симметрична относительно оси ординат (функция у = х2 - четная).
5. На промежутке [0; + ∞) функция у = х2 возрастает.
6. На промежутке (-∞; 0] функция у = х2 убывает.
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует.
3.Фунуция
Область определения этой функции - промежуток [0;+∞), т. е. все неотрицательные числа.
Придавая переменной х несколько значений из области определения функции и вычисляя соответствующие значения у по формуле , изображаем график функции.
1. Если х = 0, то у = 0, т.е. график функции имеет с осями координат общую точку (0; 0) - начало координат.
2. Если х > 0, то у > 0, т.е. все точки графика функции, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции является промежуток [0;+∞).
4. Функция не является ни четной, ни нечетной.
5. Функция возрастающая в области определения.
6. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует.
4. Функция y = x3
Область определения этой функции - множество R действительных чисел,
Придавая переменной х несколько значений из области определения функции и вычисляя соответствующие значения у по формуле у = х3, изображаем график функции.
График функции у= х3 называется кубической параболой.
1. Если х = 0, то у = 0, т.е. кубическая парабола пересекает оси координат в точке (0; 0) - начале координат.
2. Если х > 0, то у > 0, а если х < 0, то у < 0, т.е. кубическая парабола лежит в первом и третьем координатном углах.
3. Множеством значений функции у = х3 является вся числовая прямая.
4. Если значения аргумента отличаются только знаком, то и значения функции отличаются только знаком, т.е. кубическая парабола симметрична относительно начала координат (функция у = х3 - нечетная).
4. Функция у = х3 возрастающая в области определения.
5. Функция y = |x|
Область определения этой функции - множество R действительных чисел.
Пользуясь определением модуля числа х при х > О получим у = х, а при х <0 получим у = - х. Таким образом, имеем:
График функции состоит из двух частей: части прямой у = х при х ≥ 0 и из части прямой у =- х при х < 0.
1. Если х = 0, то у = 0, т.е. график пересекает оси координат в точке (0; 0) - начале координат.
2. Если х ≠ 0, то у > 0, т.е. все точки графика функции y = |x|, кроме начала координат, лежат над осью абсцисс.
3. Множеством значений функции y = |x| является промежуток [0;+∞).
4. Если значения аргумента отличаются только знаком, то значения функции равны, т.е. график функции симметричен относительно ординат (функция y = |x| - четная).
5. На промежутке [0;+∞) функция y = |x| возрастает.
6. На промежутке (-∞;0] функция y = |x| убывает.
7. Наименьшее значение функция принимает в точке х, оно равно 0. Наибольшего значения не существует.
6. Функция
Область определения функции: .
Область значений функции: .
График — гипербола.
1. Нули функции.
у ≠ 0, нулей нет.
2. Промежутки знакопостоянства,
Если k > 0, то у > 0 при х > 0; у < 0 при х < О.
Если k < 0, то у < 0 при х > 0; у > 0 при х < 0.
3. Промежутки возрастания и убывания.
Если k > 0, то функция убывает при .
Если k < 0, то функция возрастает при .
4. Четность (нечетность) функции.
Функция нечетная.
Квадратный трехчлен
Уравнение вида ax2+bx+c = 0, где a, b и с — некоторые числа, причем а≠0, называется квадратным.
В квадратном уравнении ax2+bx+c = 0 коэффициент а называется первым коэффициентом, b — вторым коэффициентам, с — свободным членом.
Формула корней квадратного уравнения имеет вид:
.
Выражение называется дискриминантом квадратного уравнения и обозначается через D.
Если D = 0, то существует только одно число, удовлетворяющее уравнению ax2+bx+c = 0. Однако условились говорить, что в этом случае квадратное уравнение имеет два равных действительных корня, а само число называют двукратным корнем.
Если D < 0, то квадратное уравнение не имеет действительных корней.
Если D > 0, то квадратное уравнение имеет два различных действительных корня.
Пусть дано квадратное уравнение ax2+bx+c = 0. Так как а≠0, то, разделив обе части данного уравнения на а, получим уравнение . Полагая
и
, приходим к уравнению
, в котором первый коэффициент равен 1. Такое уравнение называется приведенным.
Формула корней приведенного квадратного уравнения имеет вид:
.
Уравнения вида
называются неполными квадратными уравнениями. Неполные квадратные уравнения решаются разложением левой части уравнения на множители.
Теорема Виета.
Если сумма каких-нибудь двух чисел х1 и х2 равна , а их произведение равно
, то эти числа являются корнями квадратного уравнения ах2 + bх + с = 0.
Функция вида ах2 +bх + с называется квадратным трехчленом. Корни этой функции являются корнями соответствующего квадратного уравнения ах2 + bх + с = 0.
Если дискриминант квадратного трехчлена больше нуля, то этот трехчлен можно представить в виде:
где х1 и х2 — корни трехчлена
Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен можно представить в виде:
ах2 +bх + с =а(х-х1)2
где х1 — корень трехчлена.
Например, 3х2 - 12х + 12 = 3(х - 2)2.
Уравнение вида ах4 + bх2 + с = 0 называется биквадратным. С помощью замены переменной по формуле х2 = y оно приводится к квадратному уравнению аy2 + by + с = 0.
Свойства функции и вид ее графика определяются, в основном, значениями коэффициента a и дискриминанта .
- Область значений:
при а > 0 [-D/(4a); ∞)
при а < 0 (-∞; -D/(4a)];
- Четность, нечетность:
при b= 0 функция четная
при b≠0 функция не является ни четной, ни нечетной
- Нули:
при D = 0 один нуль:
- Промежутки знакопостоянства:
если, а > 0, D > 0, то
если, а > 0, D = 0, то
eсли а > 0, D < 0, то
если а < 0, D > 0, то
если а < 0, D = 0, то
если а < 0, D < 0, то
- Промежутки монотонности
при а > 0
при а < 0
Графиком квадратичной функции является парабола – кривая, симметричная относительно прямой , проходящей через вершину параболы (вершиной параболы называется точка пересечения параболы с осью симметрии).
Чтобы построить график квадратичной функции, нужно:
1) найти координаты вершины параболы и отметить ее в координатной плоскости;
2) построить еще несколько точек, принадлежащих параболе;
3) соединить отмеченные точки плавной линией.
Координаты вершины параболы определяются по формулам:
;
.
1. Растяжение графика у = х2 вдоль оси у в |а| раз (при |а| < 1 — это сжатие в 1/|а| раз).
Если, а < 0, произвести, кроме того, зеркальное отражение графика относительно оси х (ветви параболы будут направлены вниз).
Результат: график функции у = ах2.
2. Параллельный перенос графика функции у = ах2 вдоль оси х на |m| (вправо при
m > 0 и влево при т < 0).
Результат: график функции у = а(х - т)2.
3. Параллельный перенос графика функции вдоль оси у на |n| (вверх при п > 0 и вниз при п < 0).
Результат: график функции у = а(х - т)2 + п.
Решение неравенства второй степени с одной переменной можно рассматривать как нахождение промежутков, в которых соответствующая квадратичная функция принимает положительные или отрицательные значения.
Для решения неравенств вида ах2 + bх + с > 0 и ах2 + bх + с < 0 поступают следующим образом:
1) находят дискриминант квадратного трехчлена и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси х и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при а > 0 или вниз при а < 0; если трехчлен не имеет корней, то схематически изображают параболу, расположенную в верхней полуплоскости при а > 0 или в нижней при а < 0;
3) находят на оси х промежутки, для которых точки параболы расположены выше оси х (если решают неравенство ах2 + bх + с > 0) или ниже оси х (если решают неравенство ах2 + bх + с < 0).
Решим неравенство .
Рассмотрим функцию
Ее графиком является парабола, ветви которой направлены вниз (т. к. ).
Выясним, как расположен график относительно оси х. Решим для этого уравнение . Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.
Изобразив схематически параболу, найдем, что функция принимает отрицательные значения при любом х, кроме 4.
Ответ можно записать так: х — любое число, не равное 4.
1. Найти нули функции, стоящей в левой части неравенства.
2. Отметить положение нулей на числовой оси и определить их кратность (если ki четное, то нуль четной кратности, если ki нечетное — то нечетной).
3. Найти знаки функции в промежутках между ее нулями, начиная с крайнего правого промежутка: в этом промежутке функция в левой части неравенства всегда положительна для приведенного вида неравенств. При переходе справа налево через нуль функции от одного промежутка к соседнему следует учитывать:
• если нуль нечетной кратности, знак функции изменяется,
• если нуль четной кратности, знак функции сохраняется.
4. Записать ответ.
Пример:
(х + 6) (х + 1) (х - 4) < 0.
Найден нули функции. Они равны: х1 = -6; х2 = -1; х3 = 4.
Отметим на координатной прямой нули функции f(x) = (х + 6) (х + 1) (х - 4).
Найдем знаки этой функции в каждом из промежутков (-∞; -6), (-6; -1), (-1; 4) и
(4; +∞).
Из рисунка видно, что множеством решений неравенства является объединение промежутков (-∞; -6) и (-1; 4).
Функция — одно из важнейших математических понятий. Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единст
23 09 2014
1 стр.
Сформировать понятие «функция», обобщить свойства функции: нули функции, промежутки знакопостоянства, возрастание и убывание функции
14 12 2014
1 стр.
Каждая область знаний: физика, химия, биология, социология, лингвистика и т д имеет свои объекты изучения, устанавливает свойства и, что особенно важно, взаимосвязи этих объектов
14 12 2014
1 стр.
Целью нашего урока является показать роль свойств степенной функции в процессе решения ряда математических задач, а, следовательно, и роль этой функции и ее свойств в процессе сдач
14 12 2014
1 стр.
Тцу: 1 сформулировать свойства функции, понятие нуля функции, формировать навыки определения промежутков возрастания и промежутков убывания, промежутков знакопостоянства, нулей фун
14 12 2014
1 стр.
Переменная величина z называется функцией двух переменных величин x и y, если каждой паре допустимых значений x и y соответствует единственное значение z. Функция двух переменных о
14 12 2014
3 стр.
Контрольная работа №2 «Квадратичная функция. Степенная функция» (9 класс)
14 12 2014
1 стр.
Определение. Функция называется возрастающей (неубывающей) на интервале если для любых таких, что значения функции и удовлетворяют неравенству 1
14 12 2014
1 стр.