Перейти на главную страницу
Различают физическую и химическую адсорбцию (хемосорбцию). Физическая адсорбция может быть обусловлена силами различной природы - ван-дер-ваальсовыми (электростатическими, дисперсионными). Её теплота обычно невелика и соизмерима с теплотой смачивания. Проявление дисперсионных сил наиболее универсально, так как они приблизительно одинаковы для взаимодействующих веществ любой природы. Дисперсионные силы обусловливают так называемую неспецифическую адсорбцию, не зависящую от природы адсорбента или адсорбата. Если же физическая адсорбция обусловлена электростатическими силами – взаимодействием между ионами, диполями, квадруполями, - она зависит от природы адсорбата и называется специфической. Из-за небольшой прочности связей, образующихся между адсорбатом и адсорбентом, физическая адсорбция обратима. Хемосорбция сопровождается образованием химических связей, так что адсорбционный слой при этом можно рассматривать как поверхностное химическое соединение. Хемосорбция необратима и для неё характерны большие тепловые эффекты (десятки и сотни кДж/моль).
Физическая адсорбция – процесс обратимый. Адсорбированные молекулы через какое-то время могут покинуть поверхность адсорбента. Явление, обратное адсорбции, называется десорбцией. Десорбция ускоряется при повышении температуры, уменьшении давления, а также при вытеснении адсорбата с поверхности другими веществами, более способными к адсорбции в данных условиях. Адсорбция и десорбция идут в системе непрерывно. При равенстве скоростей адсорбции и десорбции выступает адсорбционное равновесие, которому соответствует равновесная концентрация адсорбтива в растворе или равновесное давление его в газовой фазе. Равновесие «адсорбция десорбция» смещается влево при понижении температуры и увеличении концентрации (давления) адсорбтива в жидкой или газовой фазе.
Значительную роль при адсорбции играет строение поверхности раздела, т. е. на адсорбенте одной и той же природы адсорбция протекает различно при гладкой («открытой») и искривлённой (шероховатой, пористой и т. п.) конфигурации поверхности.
Количественно адсорбция характеризуется двумя величинами: 1) поверхностным избытком Г, (или, иначе, гиббсовской адсорбцией) представляющим собой разность концентраций адсорбата в поверхностном слое и в объёме фазы (чаще всего раствора) и 2) величиной адсорбции А (или просто адсорбцией, которая определяется количеством х адсорбата (моль или кг), поглощённым единицей массы m, объёма V или площади поверхности S адсорбента:
Размерность А в системе СИ в соответствии с этими уравнениями будет выражаться в моль/кг (кг/кг), моль/м3 (кг/м3) и моль/м2 (кг/м2); размерность Г – моль/м2. Но, поскольку обе эти величины обычно очень малы, допускается использование в числителе кратных единиц, например, ммоль, г, мг, и т. п.
При малых концентрациях адсорбтива и, соответственно, при малых величинах адсорбции значения Г и А близки друг к другу.
Зависимость равновесной адсорбции (поверхностного избытка) от равновесной концентрации (давления) при постоянной температуре называется изотермой адсорбции (рис. 3.1). В общем случае она имеет вид сложной кривой с тремя различными по характеру участками:
Рис. 3.1. Изотерма адсорбции
где К - коэффициент Генри
Второй участок, аб, нелинейный, соответствующий равновесным концентрациям (давлениям), при которых адсорбат покрывает уже значительную часть поверхности. Третий участок, бв, линейный и параллельный оси абсцисс, соответствует большим равновесным концентрациям (давлениям), при которых вся поверхность полностью занята адсорбатом и дальнейшее повышение концентрации (давления) уже не сказывается на величине адсорбции. Величина адсорбции (поверхностного избытка), наблюдаемая при этом, называется предельной или максимальной адсорбцией и обозначается А или Амакс. Принято также говорить о предельном (максимальном) поверхностном избытке Г (или Гмакс).
Так как величина адсорбции зависит, кроме концентрации или давления адсорбтива, ещё и от температуры, возможно графическое отображение и этой зависимости. Так, зависимость А или Г от температуры при постоянной концентрации (или постоянном давлении) называется изопикной (или, соответственно, изобарой) адсорбции. В некоторых случаях требуется также знание зависимости равновесной концентрации (или давления) от температуры при постоянной величине адсорбции. Такая графическая зависимость называется изостерой адсорбции.
Механизм адсорбции зависит от природы фаз, на границе между которыми она происходит. Поэтому принято различать виды адсорбции на поверхностях раздела «жидкость – газ» (ж – г), «жидкость – жидкость» (ж – ж), «твёрдое тело – газ» (т – г) и «твёрдое тело – жидкость» (т – ж). Следует помнить, что под «жидкостью» во всех случаях подразумеваются растворы адсорбирующихся веществ, а под «газом» - смеси газов или паров.
3.2. Адсорбция на поверхности раздела “жидкость - газ”
Чаще всего в роли газовой фазы выступает воздух. Поверхность раздела раствора адсорбтива с воздухом является гладкой и равноценной в энергетическом отношении. Поэтому все точки такой поверхности раздела являются равнодоступными для молекул адсорбтива. Кроме того, на поверхности жидкости протекает только физическая адсорбция, не осложнённая возникновением поверхностных химических соединений. Это делает данный вид адсорбции наиболее удобным для теоретического рассмотрения.
В 1876 г. Дж. Гиббс вывел фундаментальное уравнение, описывающее адсорбцию поверхностно-активных веществ:
где Г - величина поверхностного избытка ПАВ при его активности в растворе, равной а; d/da – поверхностная активность, т. е. производная, показывающая, как изменяется поверхностное натяжение раствора с ростом термодинамической активности ПАВ; Т - температура; R - универсальная газовая постоянная.
В случае очень разбавленных растворов, когда активность практически равна концентрации растворённого вещества С, уравнение Гиббса может иметь такой вид:
.
Из уравнения Гиббса следует, что поверхностный избыток (гиббсовская адсорбция) тесно связан с поверхностной активностью адсорбтива. А именно, значение Г будет тем больше, чем больше его поверхностная активность. Знак «минус» требуется для того, чтобы согласовать знак адсорбции и производной d/dC. Если растворённое вещество вызывает уменьшение поверхностного натяжения, т. е. является поверхностно-активным, производная будет отрицательной, и, следовательно, значение Г будет положительным. Таким образом, из уравнения Гиббса следует, что в случае присутствия в растворе ПАВ, оно всегда будет в той или иной степени адсорбироваться на поверхности.
Имеются вещества, для которых производная d/dC положительна, то есть растворение их приводит к увеличению поверхностного натяжения. Такие вещества называются поверхностно-инактивными. Согласно уравнению Гиббса для их растворов Г должна быть отрицательной. Обычно такая «отрицательная» адсорбция трактуется как уход, «выталкивание» молекул поверхностно-инактивных веществ из поверхностного слоя в объём раствора. Объяснить это явление можно таким образом. Обычно поверхностно-инактивными по отношению к воде являются ионные соединения - сильные электролиты, например, неорганические кислоты, соли, основания и т. п. Ионы этих соединений окружены объёмной гидратной оболочкой, которая по сравнению с обычной водой обладает рядом специфических свойств, в том числе повышенными плотностью, вязкостью, поверхностным натяжением. Поэтому при подходе гидратированных ионов к поверхности раствора в слое, непосредственно граничащем с воздухом, кроме молекул воды находится и значительное число верхних частей гидратных оболочек, что соответствующим образом изменяет свойства поверхностного слоя. Сами же ионы, лежащие под гидратной оболочкой, можно рассматривать как «вытесненные» с поверхности раздела.
Наконец, есть вещества, для которых d/dC = 0, то есть они своим присутствием не изменяют поверхностного натяжения раствора (при малых концентрациях). Эти вещества, как, например, низшие углеводы, называются поверхностно-неактивными. Адсорбция их на поверхности водного раствора отсутствует.
Для того, чтобы уравнение Гиббса было удобно применять при практических расчётах, его интегрируют, после чего оно приобретает вид
,
где - изменение поверхностного натяжения раствора по сравнению с чистым растворителем, а С – изменение молярной концентрации исследуемого ПАВ.
При адсорбции ПАВ их молекулы в поверхностном слое приобретают определённую ориентацию. А именно: гидратированные полярные группы погружены в раствор, а неполярные углеводородные радикалы выталкиваются в воздух (рис. 3.2).
При этом ориентация углеводородных радикалов зависит ещё и от концентрации ПАВ в растворе, точнее от значения их гиббсовской адсорбции. Так, при очень малых концентрациях значение Г тоже очень малó, т. е. молекулы ПАВ занимают незначительную долю поверхности раздела. Из-за теплового движения они могут свободно перемещаться по поверхности, образуя подобие «двухмерного газа». Углеводородные радикалы при этом могут располагаться в газовой фазе совершенно произвольным образом (рис. 3.2, а), а если они достаточно длинны, то могут в добавок к этому изменять свою конформацию из-за свободного вращения сегментов вокруг -связей.
При средних концентрациях, когда молекулы адсорбата занимают уже значительную долю поверхности, они при столкновениях могут соединяться друг с другом в более или менее долго живущие ассоциаты (рис. 3.2, б). Эти ассоциаты могут включать в себя различное число молекул ПАВ, которое становится тем бóльшим, чем больше концентрация ПАВ в растворе. Образование таких ассоциатов в какой-то мере напоминает конденсацию пара в двухмерную жидкость.
Наконец, при очень больших концентрациях молекулы поверхностно-активного адсорбата могут занять всю поверхность раздела и образовать на ней плотный адсорбционный слой (рис. 3.2, в). При этом они образуют упорядоченную кристаллоподобную структуру. Схематическое изображение такой структуры в разрезе напоминает частокол и было названо в честь одного из выдающихся исследователей явления адсорбции – И. Лэнгмюра «частоколом Лэнгмюра).
И. Лэнгмюр, в частности, сконструировал прибор (т. н. весы Лэнгмюра), с помощью которого можно получать плотный адсорбционный слой на поверхности раствора с определённой площадью поверхности. Измеряя давление, необходимое для разрушения такого слоя, можно вычислить значение межмолекулярных сил сцепления между молекулами ПАВ. И. Лэнгмюр также предложил один из первых и, вместе с тем, достаточно точный и надёжный метод определения размеров молекул ПАВ исходя из величины гиббсовской адсорбции. Подробнее этот метод описан в руководствах к лабораторным работам по коллоидной химии.
Следует отметить, что при очень больших концентрациях ПАВ уравнение Гиббса неприменимо. Это связано с тем, что при образовании плотного адсорбционного слоя имеет место максимальная адсорбция, и изотерма её, начиная с определённого момента, представляет собой прямую линию, параллельную оси концентраций. Этот горизонтальный участок изотермы не может быть описан уравнением Гиббса, которое является уравнением восходящей кривой.
Одной из главных причин адсорбции на поверхности «ж – г» является малая растворимость ПАВ в воде (или в другой жидкости). Благодаря этому химический потенциал ПАВ в поверхностном слое меньше, чем в объёме раствора, что и приводит к вытеснению их молекул на поверхность раздела. Следует помнить, что адсорбция из растворов ПАВ идёт не только на поверхности, граничащей с воздухом, но и на стенках сосуда. После того, как все поверхности, ограничивающие раствор, будут полностью заняты адсорбатом, при больших концентрациях ПАВ их молекулы начнут вытесняться в объём раствора, формируя новые поверхности раздела и образуя так называемые мицеллы ПАВ (см. п. 1.8)
Примером применения адсорбции ПАВ на поверхности раздела «ж – г» является стабилизация мыльных, флотационных пожаротушащих и косметических пен; в фармации она используется при получении и стабилизации лекарственных пен - кислородных коктейлей, а также средств, применяемых при лечении ожогов или заживлении ран. Этот вид адсорбции лежит в основе одного из широко распространённых методов исследования и анализа – газожидкостной хроматографии.
Адсорбирующиеся молекулы ПАВ всегда ориентируются определённым образом: полярные группы погружаются в водную среду, неполярные - в неводную. Поэтому лучше всего адсорбироваться на поверхности «ж – ж» будут ПАВ со средними значениями ГЛБ, например, мыла, твины, камеди, что обусловливает их применение в качестве эмульгаторов.
Поскольку поверхность раздела фаз «ж – ж», как и поверхность «ж – г» идеально гладкая и равнодоступная в адсорбционном отношении, адсорбция на ней может быть описана уравнением Гиббса, но с использованием поверхностного натяжения на поверхности раздела “жидкость - жидкость”. Следует помнить, что адсорбирующиеся молекулы могут подходить к такой поверхности с обеих сторон, т. е. из двух граничащих растворов. Десорбция тоже может происходить в обоих направлениях. В каждом конкретном случае преимущественное направление адсорбции и десорбции будет определяться значением соответствующего химического потенциала.
3.4. Адсорбция на поверхности раздела «твёрдое тело – газ»
Газовой средой, внутри которой происходит адсорбция, чаще всего выступает воздух, а адсорбентами могут быть практически любые твёрдые вещества. Из воздуха адсорбируются водяной пар, углекислый газ и другие газы или пары, присутствующие в нём в виде примесей.
Данный вид адсорбции широко используется в лабораториях и на производстве для очистки и осушки газов и паров. Например, внутри точных лабораторных приборов, таких, как спектрофотометры, аналитические весы и др., для поддержания сухости воздуха всегда должен находиться тканевый пакет с поглотителем влаги, обычно силикагелем. Адсорбция, в том числе хемосорбция, используется для поддержания сухой атмосферы в эксикаторах, боксах и т. д. Действие противогазов основано на поглощении ядовитых газов из воздуха активированным углем или другими, более эффективными адсорбентами. Адсорбция играет одну из основных ролей в очистке воздуха жилых и производственных помещений с помощью аэрозольных (измельчённых до очень высокой степени дисперсности) дезодорантов. Один из основных методов хроматографии – газовая хроматография – основан на адсорбции газов на твёрдых пористых адсорбентах. Адсорбция является одной из стадий каталитических реакций, проводимых в газовой фазе на твёрдых катализаторах.
Следует также помнить и об отрицательном значении адсорбционных явлений. Например, адсорбция влаги и паров агрессивных жидкостей вызывает коррозию различных материалов, в том числе металлических и железобетонных конструкций, промышленного и лабораторного оборудования. Пары летучих веществ, как ароматных, так и дурно пахнущих, адсорбируясь, часто придают соответствующий запах одежде, мебели, стенам и т. п.
В отличие от жидких поверхностей на твёрдых возможна как физическая адсорбция, так и хемосорбция. В данном разделе мы рассмотрим главным образом физическую адсорбцию.
При обычных условиях на гладких поверхностях адсорбция из газовой среды протекает очень быстро, так что адсорбционное равновесие устанавливается иногда за доли секунды. На пористых или порошкообразных адсорбентах адсорбция протекает медленнее, но зато достигаются бóльшие значения величины адсорбции. Экспериментально количество адсорбированного вещества х определяется по разности массы адсорбента до и после адсорбции, а величина адсорбции А - отношением этой разности к первоначальной массе адсорбента m:
В зависимости от того, в чём удобнее выражать относительное содержание адсорбтива в среде, при изучении адсорбции на поверхности раздела «твёрдое тело – газ» (т – г) можно использовать изотермы в координатах А – р или А – С. Различают мономолекулярную и полимолекулярную адсорбцию. При мономолекулярной адсорбат располагается на поверхности адсорбента слоем толщиной в одну молекулу, при полимолекулярной – в несколько таких слоёв.
Исходя из указанных положений, Лэнгмюр вывел уравнение, описывающее изотерму адсорбции. Согласно предложенной им модели, процесс адсорбции - десорбции можно представить в виде обратимой квазихимической реакции между молекулами адсорбата (обозначенными ) и адсорбционными центрами (обозначенными ):
+ .
( - активный центр с адсорбированной на нём молекулой).
По мере увеличения концентрации адсорбирующегося вещества в соответствии с принципом Ле-Шателье равновесие в этой реакции сдвигается в сторону образования адсорбционного комплекса и свободных адсорбционных центров становится меньше. Константа адсорбционного равновесия К (без учета коэффициентов активности) равна
С
К = .
С С
Переходя от этих условных обозначений к терминам учения об адсорбции, можно принять число активных центров, занятых молекулами адсорбата на единице поверхности, равным величине адсорбции А (т. е. С = А), число оставшихся свободными активных центров С равным разности А А, где А - ёмкость адсорбционного монослоя или величина предельной адсорбции. Заменим эти эквивалентные величины друг на друга, а также примем, что C = С (С - равновесная концентрация адсорбтива в объёме газа):
.
Решая это уравнение относительно величины адсорбции, получим уравнение Лэнгмюра:
Так как концентрации газов и паров пропорциональны парциальным давлениям соответствующих компонентов, то уравнение Лэнгмюра может быть выражено и через равновесное парциальное давление адсорбирующегося вещества р:
На практике часто используется другая форма уравнения Лэнгмюра, получаемая из выведенной выше путём деления правой части на К:
и, соответственно
где b – т. н. адсорбционный коэффициент (b = 1/K).
Из уравнений (3.1) и (3.2) следует, что адсорбционный коэффициент имеет размерность концентрации или, соответственно, адсорбции. Чтобы выяснить физический смысл этой концентрации, заменим в уравнении (2.1) b на C:
и решим его относительно А:
Таким образом, адсорбционный коэффициент b численно равен такой равновесной концентрации (или равновесного парциального давления) адсорбтива, при которой величина адсорбции составляет половину предельного значения.
Уравнение Лэнгмюра в принципе является строгим в термодинамическом отношении и в принципе может хорошо описывать все участки изотермы адсорбции. Так, при очень малых концентрациях (давлениях) адсорбтива, когда C << b ( или р << b), величиной С (р) в знаменателе уравнений (2.1) и (2.2) можно пренебречь. Тогда эти уравнения переходят в уравнения прямой, проходящей через начало координат, т. е. превращаются в уравнения Генри и пригодны для описания начального участка изотермы. При очень больших значениях равновесных концентрации или давления, когда C >> b ( или р >> b), в знаменателе можно пренебречь величиной b. При этом уравнения приобретают вид
и, таким образом, соответствуют третьему участку изотермы, когда адсорбция достигает предельного значения и перестаёт зависеть от концентрации (давления) адсорбтива.
Вместе с тем уравнение Лэнгмюра из-за того, что оно основано на идеализированной модели, не всегда соответствует реально наблюдаемым величинам адсорбции. Иными словами, построенная на его основе теоретическая изотерма адсорбции (т. н. изотерма Лэнгмюра) может заметно отличаться от экспериментальной. Лучше всего уравнение Лэнгмюра подходит для описания адсорбции на сравнительно гладких поверхностях.
Интересно отметить, что в полярографии отмечается зависимость высоты так называемых адсорбционных пиков от концентрации, идеально подчиняющаяся уравнению Лэнгмюра. Это говорит о том, что уравнение пригодно для описания адсорбции даже на жидкой поверхности, какой является идеально гладкая поверхность ртутной капли.
или (3.4)
Таким образом, оно превращается в уравнение прямой, не проходящей через начало координат (вида y = ax + b).
По нескольким экспериментальным данным строится график зависимости 1/А от 1/С (или от 1/р) (рис. 3.3). Усредняющая прямая, соединяющая точки, экстраполируется на ось ординат. При этом от неё отсекается отрезок OМ, равный 1/А. Отсюда следует, что А = 1/0М. Константа b может быть определена различными способами. Так, тангенс угла
Можно также с учётом уравнения (3.3) сделать дополнительное построение – отложить на оси ординат отрезок МК, равный 0М. Тогда отрезок 0К окажется равным 2/А. Интерполяцией находится соответствующая ему точка L, а отрезок 0L при этом равен 1/b. Значит, b = 1/0L.
Константы А и b можно легко определить и по экспериментальной изотерме адсорбции (рис. 3.4).
А определяется по положению горизонтального участка изотермы. А затем с учётом уравнения (3.3) на оси ординат откладывается отрезок 0К, равный 1/А. Затем на оси абсцисс интерполяцией находится точка, соответствующая значению b. Однако такой способ определения констант возможен лишь при наличии данных для построения полной изотермы адсорбции.
Рис. 3.4. Определение константы b уравнения Лэнгмюра
с помощью изотермы адсорбции
3.4.2. Уравнение Фрёйндлиха
Существует еще одно уравнение, описывающее изотерму адсорбции, называемое уравнением Г. Фрёйндлиха (1906):
где k и 1/n – константы. (Константа, являющаяся показателем степени, обычно записывается в виде 1/n, а не n, чтобы подчеркнуть, что равновесная концентрация или равновесное давление возводится в степень, которая всегда бывает меньше единицы).
Уравнение Фрёйндлиха является эмпирическим, т. е. за ним не стоит строгой теории. Оно было выбрано среди других уравнений как уравнение параболы, по виду напоминающей изотерму адсорбции. Потому теоретическая изотерма, построенная с его помощью, совпадает с экспериментальной только в области средних концентраций. В области же малых и, в особенности, очень больших концентраций (давлений) наблюдаются значительные расхождения между экспериментом и теоретически предсказанными величинами адсорбции. Однако в практической деятельности редко приходится иметь дело с такими областями концентраций. Поэтому уравнение Фрёйндлиха в силу его простоты и лёгкости определения констант, используется очень широко. Особенно часто его используют при исследовании адсорбции на пористых и порошкообразных адсорбентах.
Уравнение Фрейндлиха линеаризуется с помощью логарифмирования:
или .
С учётом этого для графического определения констант по нескольким экспериментальным данным строится логарифмическая изотерма адсорбции в координатах lg A - lg C или, соответственно lg A - lg р (рис. 3.5). В этом случае график при экстраполяции отсекает от оси ординат отрезок ОМ, равный lg k (т. е. k = 100М), а тангенс угла наклона его к оси абсцисс равен 1/n.
Рис. 3.5. Графическое определение констант уравнения Фрёйндлиха
Изучением полимолекулярной адсорбции на неоднородных поверхностях начал заниматься ещё И. Лэнгмюр. Однако ввиду сложности проблемы исчерпывающего решения её до сих пор не найдено. Учение о полимолекулярной адсорбции развивалось преимущественно с использованием двух подходов. Один из них основывался на теории Лэнгмюра с отказом от её второго положения. В соответствии с этим активные адсорбционные центры способны принять более чем одну молекулу. Этот подход развивался в работах
Полимолекулярную адсорбцию можно рассматривать как конденсацию пара на поверхности адсорбента с образованием тончайшей (толщиной в несколько молекул) поверхностной плёнки, смачивающей поверхность.
При наличии в теле адсорбента глубоких пор и капилляров, имеющих диаметр, соизмеримый с размерами молекул газов, полимолекулярная адсорбция часто происходит по механизму капиллярной конденсации. Она заключается в слиянии таких псевдоожиженных адсорбционных слоёв на стенках пор и капилляров с последующим заполнением пор продолжающим конденсироваться адсорбатом. Вначале заполняются мелкие поры, затем - более крупные. Интересно, что при этом изотермы, полученные при адсорбции с заполнением пор и при десорбции с их опорожнением, имеют различный вид. При наложении их друг на друга получается изотерма с петлей капиллярно-конденсационного гистерезиса (рис. 3.7):
Председатель проф. Е. Н. Вергейчик, проф. В. Г. Беликов, проф. В. И. Погорелов, проф. Ю. Г. Пшуков, проф. М. Д. Гаевый, проф. Д. А. Муравьева, доц. В. В. Гацан, доц. Б. И. Литв
10 09 2014
14 стр.
Криминалистика: Курс лекций / Е. Р. Россинская; Московская государственная юридическая академия. М.: Норма: инфра-м, 2010. 384 с.: 60x90 1/16
14 12 2014
1 стр.
Радаев А. А. Краткий курс лекций по экологии для студентов гуманитарных специальностей Часть I правовое регулирование природопользования
14 12 2014
1 стр.
Работа выполнена на кафедре физической и коллоидной химии Российского государственного университета нефти и газа имени И. М. Губкина
10 10 2014
4 стр.
Предмет физической химии. Значение физической химии для фармации, медицины и биологии. Физико-химические методы исследования и анализа, используемые в фармации
30 09 2014
1 стр.
Укажите температуру, для которой в справочниках приводятся стандартные термодинамические величины
13 10 2014
3 стр.
Бекетов А. И. Курс лекций по фармакологии (учебное пособие для отечественных и иностранных студентов): в 2 ч. Часть – 2-е изд., перераб и доп. – Симферополь, 1998. – 100 с
15 09 2014
10 стр.
Основными классами неорганических соединений являются оксиды, кислоты, соли и основания
10 10 2014
4 стр.