Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1страница 2страница 3
Частотомер
…до 10 МГц

https://nowradio.nm.ru/chastotomer%201-9999999%20na%20mikrosxeme%20hcf4026bey.htm

Микросхема HCF4026BEY является представителем высокоскоростной КМОП-логики. С К174ИЕ4 её роднит только функциональный состав, и то не во всем. HCF4026BEY содержит десятичный счетчик и дешифратор для работы на светодиодный семисегментный индикатор с общим катодом. Входные импульсы нужно подавать на вход С (выв. 1). Важная особенность данного входа в наличии на нем триггера Шмитта, что, в случае с частотомером, позволяет значительно упростить схему входного усилителя-формирователя, исключив из него схему триггера Шмитта. В простейшем случае можно ограничиться обычным транзисторным ключом. Но и это не все. Вход С счетчика можно закрыть, подав логическую единицу на вывод 2 микросхемы. Таким образом, внешнее ключевое устройство, пропускающее импульсы на вход счетчика в период измерения, уже тоже не нужно. Выключить индикацию, можно подав логический ноль на вывод 3. Таким образом, схема устройства управления   классического  частотомера существенно упрощается.





На рисунке приводится экспериментальная  схема   частотомера, измерительный счетчик которого выполнен на микросхемах HCF4026BEY, а остальная часть на CD40. Частотомер может измерять частоту от 1 Гц до 10 МГц (до 9999999 Гц). При питании от источника 12V это максимальная входная частота для HCF4026BEY. Входной усилитель выполнен на транзисторе VT1 по схеме ключа. Он преобразует входной сигнал в импульсы произвольной формы. Прямоугольность импульсам придает триггер Шмитта, имеющийся на входе С внутри микросхемы D4. Диоды VD1-VD4 ограничивают величину амплитуды входного сигнала, частоту которого нужно измерить. Нагружен ключ VT1 на резистор R3, с которого усиленный и ограниченный сигнал поступает на вход семидекадного измерительного счетчика D4-D10. Генератор опорных импульсов сделан на микросхеме D1, - CD4060B. Это уже хорошо известная микросхема, состоящая из многоразрядного двоичного счетчика и инверторов для построения мультивибратора на RC-цепи или на кварцевом резонаторе. В данном случае используется резонатор на 32768 Гц, - стандартный часовой резонатор. При делении его частоты на 8192 (снята с выхода с весовым коэффициентом 4096) на выводе 2 D1   получается  частота 4 Гц. Эта  частота поступает на схему управления, состоящую из десятичного счетчика D2 и двух RS-триггеров на микросхеме D3. Работает схема управления следующим образом. Допустим, счетчик D2 был в нулевом положении. Логическая единицы с его вывода 3 обнуляет все счетчики D4-D10. Далее, с приходом очередного импульса, на его выводе 2 появляется единица. Она переключает RS триггер D3.1-D3.2 в состояние с логическим нулем на выходе D3.1. Этот нуль поступает на вывод 2 D4 и открывает вход счетчика D4. В течение ближайших четырех импульсов, поступающих от D1 (то есть, в течение одной секунды), будет происходить счет импульсов измеряемой частоты. Затем, с приходом 4-го импульса, возникнет логическая единица на выводе 10 D2. Эта единица установит триггер D3.1-D3.2 в состояние логической единицы. Вход счетчика D4 будет закрыт, - на этом завершится время измерения. А триггер D3.3-D3.4 будет установлен в состояние логической единицы на выходе D3.4. Эта единица поступит на выводы 3 всех микросхем D4-D10 и разрешает индикацию. Индикаторы зажигаются и показывают результат измерения. Индикация прекращается с приходом 9-го импульса. Триггер D3.3-D3.4 возвращается в исходное положение и выключает индикацию. Затем, D2 устанавливается в ноль, и весь процесс повторяется. Таким образом, частотомер работает по, так называемой, медленной схеме, в которой периоды измерения и индикации разнесены по времени. Период измерения составляет одну секунду, период индикации чуть больше, -1,25 секунды. Теперь подробнее о деталях. Кварцевый резонатор часовой на частоту 32768 Гц. Вместо него можно использовать импортный часовой резонатор на 16384 Гц (такие резонаторы бывают в китайских кварцевых будильниках), но частоту 4 Гц нужно будет снимать не с 2-го вывода D1, а с 1-го. Микросхему CD4060B можно заменить другим аналогом типа хх4060 (например, NJM4Q60) или заменить схемой из счетчика К561ИЕ16 и отдельного мультивибратора на любой КМОП микросхеме с числом инверторов не менее двух. Можно даже использовать микросхему К176ИЕ12 в типовой схеме включения, снимая импульсы частотой 2 Гц с её вывода 6. но, при этом нужно будет соединенные вместе выводы 6 и 8 D3 отключить от вывода 10 D2, и подключить к выводу 4 D2. А продолжительность индикации станет в два раза больше. Микросхему CD4017B можно заменить другим аналогом типа хх4017, либо отечественной микросхемой К561ИЕ8 или К176ИЕ8. Микросхема CD4001B - прямой аналог нашей К561ИЕ5, или К176ИЕ5. Следует знать, что у микросхемы HCF4026BEY есть довольно много аналогов, но, к сожалению, не полных. HCF4026BEY относится к высокоскоростной логике КМОП, поэтому данный частотомер может измерять частоту до 10 МГц. Если же вам посчастливится приобрести микросхему CD4026, кото­рая по выводам и схеме включения полностью аналогична HCF4026BEY, - знайте, что прибор не сможет измерять частоты более 2 МГц, так как CD4026, согласно паспортным данным, на частотах более 2 МГц работать не может. Семисегментные светодиодные индикаторы можно использовать любые, важно только чтобы они были с общим катодом. Если же вы располагаете индикаторами исключительно с общим анодом, - нужно будет сделать промежуточные транзисторные ключи - инверторы, что существенно усложнит схему (во всяком случае, по числу корпусов полупроводников). Резисторы R6-R54 можно и не устанавливать, - на выходах микросхем HCF4026BEY имеются какие-то токоограничительные схемы, но яркость свечения сегментов индикатора получается неравномерной. Так что с резисторами и индикация лучше и меньше нагрев корпусов HCF4026BEY. Схема входного узла частотомера - примитивная, и лучше её заменить каким-то более совершенным узлом, обеспечивающим большую чувствительность. Ранее были описаны множество входных устройств и можно подобрать, подходящий узел. При этом совсем не обязательно чтобы в схеме узла был триггер Шмитта, - он есть в микросхеме HCF4026BEY, и здесь достаточно ограничиться только усилителем-ограничи­телем, формирующим импульсы произвольной формы. Питаться частотомер может от лабораторного источника напряжением 12V. Думаю, микросхемам HCF4026BEY, или другим ХХ4026, можно найти применение практически во всех схемах, где должны работать уже давно снятые с производства К176ИЕ4, то есть везде, где нужен десятичный счетчик с выходом на цифровой семисегментный индикатор.

Радиоконструктор №6 2008г стр. 8

…на 176й серии

https://nowradio.nm.ru/chastotomer%20na%20mikrosxemax%20K176.htm

Технические характеристики прибора:

Верхний предел измерения частоты                             2 МГц.

Пределы измерения                                                    10кГц, 100кГц, 1 МГц. 2 МГц.

Чувствительность (S1 в положении 1:1)                       0,05 В.

Входное сопротивление                                              1 МОм.

Ток потребления от источника не более                        0,24.

Напряжение питания                                                   9...11В.



Принципиальная схема входного устройства показана на рисунке 1. Измеряемый сигнал через гнездо Х1 и конденсатор С1 поступает на частотно-корректированный делитель на элементах R1, R2, С2, СЗ. Коэффициент деления 1:1 или 1:10 выбирается переключателем S1.    С него входной сигнал поступает на затвор полевого транзистора VT1. Цепочка, состоящая из резистора R3 и диодов VD1-VD6, защищает этот транзистор от перегрузок по входа (ограничивает входной сигнал, расширяя, таким образом, динамический диапазон входа). Транзистор VT1 включен по схеме истокового повторителя и нагружен на дифференциальный усилитель, выполненный на двух транзисторах микросборки DA1 и транзисторе VT2. Коэффициент усиления этого усилителя около 10. Режим работы дифференциального каскада задается делителем напряжения R7R8. Подбирая сопротивление резистора R4 , включенного в истоковой цепи транзистора VT1, можно установить максимальную чувствительность входного узла по напряжению. С коллектора транзистора VT2 усиленный сигнал поступает  на формирователь импульсов, построенный на элементах D1.1 и D1.2 по схеме триггера Шмитта. С выхода этого формирователя импульсы поступают на вход ключевого устройства на элементах D1.3 и D1.4. Работая по логике "2-И-НЕ" элемент D1.3 пропускает через себя импульсы от входного устройства только тогда, когда на его вывод 9 поступает уровень логической единицы. При уровне нуля на этом выводе импульсы через D1.3 не проходят, таким образом, устройство управления, изменяя уровень на этом выводе, может устанавливать временной интервал, в течение которого импульсы будут поступать на вход счетчика частотомера, и таким образом измерять частоту. Элемент D1.4 выполняет роль инвертора. С выхода этого элемента импульсы поступают на вход счетчика частотомера.



Принципиальная схема счетчика показана на рисунке 2. Счетчик четырехразрядный, он состоит из четырех одинаковых счетчиков К176ИЕ4 - D2-D5, включенных последовательно. Микросхема К176ИЕ4 представляет собой десятичный счетчик, совмещенный с дешифратором, рассчитанным на работу с цифровыми индикаторами с семисегментной организацией индикации цифр. При поступлении импульсов на счетный вход С этих микросхем, на их выходах формируется такой набор уровней, что семисегментный индикатор показывает число импульсов, поступивших на этот вход. При поступлении десятого импульса счетчик обнуляется, и счет начинается снова, при этом на выходе переноса Р (вывод 2) появляется импульс, который подается на счетный вход следующего счетчика (на вход более старшего разряда). При подаче единицы на вход R счетчик в любой момент можно установить в нулевое положение. Таким образом, включенные последовательно четыре микросхемы К176ИЕ4 образуют четырехразрядный десятичный счетчик с семисегментными светодиодными индикаторами на выходе.





Принципиальная схема формирователя опорных частот и устройства управления показана на рисунке 3. Задающий генератор выполнен   на  элементах   D6.1 и  D6.2, его частота (100 кГц) стабилизирована кварцевым резонатором Q1. Затем эта частота поступает на пятидекадный делитель, выполненный на счетчиках D7-D11, микросхемах К174ИЕ4, семисегментные выходы которых не используются. Каждый счетчик делит частоту, поступающую на его вход, на 10. Таким образом, при помощи переключателя S2.2 можно выбрать временной интервал, в котором будет происходить подсчет входных импульсов и, таким образом. Изменять пределы измерения. Предел измерения 2 МГц ограничен функциональными возможностями микросхем К176, которые на более высоких частотах не работают. На этом пределе можно пытаться измерять и более высокие частоты (до 10 МГц), но погрешность измерения будет слишком высокой, а на частотах более 5 МГц измерение вообще будет невозможным. Устройство управления выполнено на четырех D-триггерах на микросхемах D12 и D13. Работу устройства удобно рассматривать с момента появления импульса установки нуля C"R"), который поступает на входы R счетчиков частотомера (рисунок 2). Одновременно этот импульс поступает на вход S триггера D13.1 и устанавливает его в единичное состояние. Единичный уровень с прямого выхода этого триггера блокирует работу триггера D13.2, а нулевой уровень на инверсном выходе D13.1 разрешает работу триггера D12.2, который по фронту первого же импульса, поступившего с выхода D12.1 вырабатывает измерительный стробирующий импульс ("S"), который открывает элемент D1.3 входного устройства (рисунок 1). Начинается цикл измерения, в течение которого импульсы с выхода входного устройства поступают на вход "С" четырехразрядного счетчика (рисунок2), и он их считает. По фронту следующего импульса, поступающего с выхода D12.1, триггер D12.2 возвращается в исходное положение и на его прямом  выходе устанавливается нуль, который закрывает элемент D1.3 и подсчет входных импульсов прекращается. Поскольку время, в течение которого длился подсчет импульсов кратно одной секунде, то в этот момент на индикаторах будет истинное значение частоты измеряемого сигнала. В этот момент фронт импульса с инверсного выхода триггера D12.2 триггер D13.1 переводится в нулевое состояние, и разрешается работа триггера D13.2. На вход С триггера D13.2 поступают импульсы частотой 1 Гц с выхода D11, и он последовательно устанавливается сначала в нулевое, затем в единичное состояние. Во время счета триггером D13.2 триггер D12.2 заблокирован единицей, поступающей с инверсного выхода триггера D13.1. Идет цикл индикации, который длится одну секунду на нижнем пределе измерения, и две секунды на остальных  пределах измерения. Как только на инверсном выходе D13.2 будет единица, положительный перепад напряжение на этом выходе пройдет через цепочку C10R43, которая сформирует короткий импульс, он поступит на входы "R" счетчиков D2-D5 и установит их в нулевое состояние. Одновременно  установится  в  единичное состояние триггер D13.1 и весь, описанный процесс работы устройства управления повторится. Триггер D12.1 устраняет влияние флуктуации фронта низкочастотных импульсов, соответствующих времени, в течение которого происходит подсчет входных импульсов. Для этого импульсы, поступающие на вход D триггера D12.1, проходят на выход этого триггера только по фронту синхронизирующих импульсов с частотой следования 100 кГц, снимаемым с выхода мультивибратора на D6,1 и D6.2, и поступающих на вход С D12.1. Частотомер можно собрать и на других микросхемах. Микросхемы К176ЛА7 можно заменить на К561ЛА7, микросхемы К176ТМ2 — на К561ТМ2, при этом схема прибора никак не изменяется. Светодиодные семисегментные индикаторы можно использовать любые (отображающие одиночные цифры), если они с общим анодом, что более предпочтительно, поскольку выходы микросхем К176ИЕ4 развивают больших ток при зажигании сегментов нулями, и в результате получается больше яркость свечения, то изменения схемы касаются только цоколевки индикаторов. Если имеются только индикаторы с общим катодом, можно использовать и их, но в этом случае нужно на выводы 6 микросхем D2-D5 подавать не нуль, а единицу, отключив их от общего провода и подключив к шине питания. При отсутствии микросхем К176ИЕ4 каждую микросхему D2-D6 можно заменить двумя микросхемами, — двоично-десятичным счетчи­ком и дешифратором, например в качестве счетчика   —   К176ИЕ2  или    К561ИЕ14     (в десятичном включении), а в качестве дешифратора — К176ИД2. Вместо К174ИЕ4 в качестве D7-D11 тоже можно использовать любые десятичные счетчики серий К176 или К561, например К176ИЕ2 в десятичном включении, К561ИЕ14 в десятичном включении, К176ИЕ8 или К561ИЕ8. Кварцевый резонатор может быть на другую частоту, но не более 3 МГц, при этом придется изменить коэффициент пересчета делителя на микросхемах D7-D11, например если резонатор будет на 1 МГц, то между счетчиками D7 и D8 нужно будет включить еще один такой же счетчик. Питается прибор от стандартного сетевого адаптера или от лабораторного источника питания, напряжение питания должно быть в пределах 9... 11 В. Настройка входного узла. К входному гнезду Х1 подключают генератор синусоидальных сигналов, а к выходу элемента D1.2 — осциллограф. На генераторе устанавливают частоту 2 МГц и напряжение 1В, и постепенно уменьшая выходное напряжение генератора, подбором сопротивления R4 добиваются максимальной чувствительности входного устройства, при которой сохраняется правильная форма импульсов на выходе элемента D1.2. Цифровая часть частотомера, при исправных деталях и безошибочном монтаже в настройке не нуждается. Если не будет запускаться кварцевый генератор нужно подобрать сопротивление резистора R42.

Радиоконструктор №7 2000г стр. 12

… простой



https://nowradio.nm.ru/prostoy%20chastotomer%20radiolubitely.htm

Частотомер пригоден для работы в радиолюбительской мастерской, он прост в изготовлении. Частотомер способен измерять частоту электрических сигналов в диапазоне от 1 Гц до 99999 Гц. Амплитуда входного сигнала может быть в пределах 0.05...15В. Время однократного измерения составляет 2 секунды. Индикация — на светодиодных семисегментных индикаторах. Питается прибор от внешнего источника питания напряжение 9 В.



Принципиальная схема показана на рисунке.



Формирователь импульсов выполнен на транзисторе VT1 и элементах D3.1 и D3.2. Диод VD1 служит ограничителем отрицательного напряжения на эмиттерном переходе транзистора. Пока напряжение входного сигнала менее 0,6 В диод закрыт и не оказывает никакого воздействия на работу каскада. Когда же амплитуда измеряемого сигнала превышает этот предел диод открывается при отрицательных полуволнах и ограничивает отрицательные полуволны на уровне 0,8 В. Резистор R4 ограничивает ток, протекающий через диод при больших уровнях входного сигнала. С выхода транзисторного каскада сигнал поступает на управляемый триггер Шмидта на элементах D3.1 и D3.2 и резисторе R1, который переводит элементы в триггерный режим. Управление осуществляется через вывод 6 D3.2, когда на нем единичный уровень элемент D3.2 открыт и триггер Шмидта функционирует, пропуская сформированные импульсы на вход счетчика D4-D8. При нулевом уровне на этом входе этот элемент закрыт и импульсы на счетчик не поступают. Управляющее устройство состоит из генератора импульсов частотой 1 Гц на микросхеме D1 и D-триггера на микросхеме D2. Микросхема D1 — К176ИЕ12 , часовая микросхема, которая должна вырабатывать набор частот для работы электронных часов. В данном случае используется только одна выходная частота — секундные импульсы (частотой 1 Гц), следующие на выводе 4. Частота задающего генератора микросхемы стабилизирована кварцевым резонатором Q1 на стандартную "часовую" частоту — 32768 Гц. Импульсы с выхода D1 поступают на вход С триггера D2, который работает в режиме делителя частоты на два. В результате на его выходе получаются симметричные импульсы, следующие с частотой 0,5 Гц, при этом длительности положительного перепада и отрицательного одинаковые, и равны одной секунде. Предположим, в исходном положении на выходе триггера D2 логический ноль, при этом элемент D3.2 закрыт и импульсы через него на счетчик не поступают. При этом частотомер находится в состоянии индикации и на индикаторе виден результат предыдущего измерения. Затем триггер D2 переходит в единичное состояние. При этом зарядный ток С1 формирует импульс высокого уровня на выводах R счетчиков и они обнуляются. В тоже время единица с выхода триггера поступает на вывод 6 D3.2 и этот элемент открывается. Начинается режим измерения, когда импульсы со входа поступают на счетчик D4-D8. При этом показания индикаторов постоянно меняются. Длится это в течении одной секунды. Затем триггер снова переходит в нулевое состояние и счет импульсов прекращается. На индикаторах отображается значение измеренной частоты. Время индикации будет длится около одной секунды, затем процесс повторится. Счетчик состоит из пяти последовательно включенных счетчиков типа К176ИЕ4, которые считают до десяти, имеют выход переноса счета и десятичный дешифратор, Вырабатывающий коды для семисегментного индикатора. Полярность выходных котов можно менять изменяя уровень на выводе 6 микросхем К176ИЕ4. в данном случае индикаторы с общим катодом, и для их зажигания требуются единичные уровни, поэтому на вывод 6 поступает ноль. Если использовать индикаторы с общим анодом их нужно будет зажигать нулями, а для этого выводы 6 этих микросхем нужно соединить с плюсом питания. Настройка сводится к подбору номинала R6 таким образом, чтобы напряжение на коллекторе VT1 было равно 4,5...6В. При этом чувствительность прибора будет 0,05 В. Образцовую частоту в небольших пределах можно подстраивать конденсатором С3. Если надобности в такой точной калибровке нет можно С3 исключить и поставить С4 на 20 пФ.

Радиоконструктор №11 1999г стр. 16

автомат рег. ярк. СД инд.



https://nowradio.nm.ru/avtomaticheskay%20regulirovka%20yrkosti%20svetodiodnux%20indikatorov.htm

В настоящее время большую популярность в различной радиолюбительской измерительной и другой технике получили светодиодные цифровые индикаторы. Немалую роль играет то что такие индикаторы, кроме таких важных характеристик как высокая механическая прочность и высокая яркость, отличаются еще и относительной доступностью, они имеются в широкой продаже, на рынках и в каталогах фирм, занимающихся посылочной торговлей. Но им присущ один общий для всех "светящихся" индикаторов недостаток. Показания табло хорошо считывается -только при умеренной внешней освещенности, когда индикатор днем находится в тени. В сумерках цифры светятся слишком ярко и становятся трудноразличимыми. А в солнечный день яркости свечения индикаторов явно не достаточно и показания также становятся трудноразличимыми. В этом смысле более привлекательны новые типы жидкокристаллических индикаторов с встроенной цветной фоновой подсветкой, но такие приборы в широкой продаже практически не встречаются, во всяком случае автору данной статьи "держать в руках" такой индикатор не доводилось. В связи с этим определенный интерес должны вызывать несложные схемы автоматической регулировки яркости светодиодных индикаторов, которые соответственно внешней освещенности либо уменьшают яркость свечения индикаторов либо её увеличивают. Предлагаемый регулятор (рисунок 1) включается в разрыв цепи питания общих анодов индикаторов, и работает по принципу питания их импульсным напряжением, скважность импульсов которого изменяется под действием внешнего освещения.



Регулятор состоит из генератора прямоугольных импульсов на элементах D1. и D2, узла регулировки скважности этих импульсов (на элементах D3, D4 и VD2, R3 R4, С2), и ключевого каскада на транзисторах VT1 и VT2. Частота импульсов на выходе мультивибратора около 400-500 Гц, длительность положительных перепадов этих импульсов около 2 мС. Узел регулировки скважности задерживает фронт поступающего на его вход импульса в зависимости от яркости освещения фотодиода VD2, при том чем больше света попадает на этот фотодиод тем менее задержка, и тем ярче будут светиться индикаторы. При всем этом точка спада импульса сохраняется. Таким образом частота не изменяется, но меняется длительность положительных перепадов, поступающих на базу транзистора VT1, а значит и скважность импульсов, а также и общая энергия, поступающая на общие аноды индикаторов. В результате изменяется и яркость их свечения. Настройка автоматического регулятора заключается в установке начальной яркости свечения индикаторов в темноте (при полном затемнении фотодиода) подстройкой резистора R3. При указанных на схеме номиналах элементов яркость свечения изменяется в диапазоне от темноты до прямого солнечного света, примерно в   4-5 раз. При установке такого регулятора в устройство с дешифраторами на микросхемах серии К176ИД2 или К176ИЕЗ-4 можно исключить токоограничивающие резисторы, включаемые между выходами этих микросхем и индикаторами, или в несколько раз уменьшить сопротивления гасящих резисторов, включенных на выходах микросхем ТТЛ или транзисторных ключей, через которые поступают сигналы на сегменты. Напряжение питания микросхемы D1 может быть от 5-ти до 15-ти вольт. При этом напряжение питания индикаторов может быть любым (таким как в схеме прибора до переделки). Если нужно управлять яркостью свечения индикаторов с общими катодами выходной ключевой каскад нужно собрать по схеме показанной на рисунке 2.

 

При отсутствии фотодиода можно устроить ручную регулировку заменив его переменным резистором.



Радиоконструктор №4 2000г стр. 35

на ИВ-6



https://nowradio.nm.ru/prostoy%20malogabaritnuy%20chastotomer.htm

Не у всех радиолюбителей в своей лаборатории имеется частотомер. Тем, кто нуждается в этом, предлагается простой малогабаритный прибор его схема на рисунке.



Его можно использовать как цифровую шкалу к генератору низкой частоты, так и как отдельный прибор.



Технические характеристики:

измеряемая частота, Гц                                    0...99999;

входное напряжение, В                                   0,05.. .50;

напряжение питания, В                                    10...17;

погрешности измерения, %                              05…0,8.

В основу прибора применена схема классическая схема. Для того чтобы прибор заработал как частотомер, необходимо во входной части цепочку R2, D1 зашунтировать конденсатором С2. В приборе изменена индикация. Дело в том, что применять АЛС-320А нецелесообразно из-за мелкого шрифта, а АЛС-324 - из-за большого потребляемого тока. Жидкокристаллические индикаторы труднодоступны, поэтому было принято решение использовать вакуумные индикаторы ИВ-6 со старых списанных калькуляторов, не являющимися дефицитом. Для их питания была собрана схема мультивибратора на транзисторах КТ315. Под рукой стандартного ферритового кольца не нашлось, тогда была использована сердцевина горшкообразного феррита с магнитной проницаемостью 2000, с наружным диаметром 50 мм. Оббив чашечки, получилось ферритовое кольцо размером 20x16x8 мм. Первичная обмотка I-II намотана проводом ПЭВ диаметром 0,14 мм и содержит 100 витков. Вторичная обмотка III намотана проводом ПЭВ диаметром 0,44 и содержит 6 витков, с таким расчетом, чтобы при изменении питающего напряжения в пределах 10...17 В напряжение накала было в пределах 5,1.. .6,9 В. Гашение индикаторов на период счета осуществляется воздействием фронта входных импульсов, переключающих триггер DD2 в единичное состояние. Сигнал высокого уровня с выхода 1 обнуляет счетчики DD4...DD8 короткими импульсами зарядки конденсатора С10, а сигнал низкого уровня с вывода 2 поступает на базу VT6 и закрывает его. Таким образом, прерывая плюс питания микросхемы DD4...DD8. получаем кратковременную паузу на период счета. При желании можно гашение осуществлять, прерывая подачи положительного напряжения на сетки индикаторов, но при этом заметно мелькание цифр. Блок питания выполнен по обычной классической схеме. Его можно заменить микросхемой 7809 или К142ЕН8, на выходе которых получается стабилизированное напряжение +9 В. В приборе частотный диапазон можно значительно расширить, применив на входе делители на микросхемах К193 и добавив на выходе количество счетчиков и индикаторов.



Радиолюбитель №4 2007г стр. 37


следующая страница>


На рисунке приводится экспериментальная схема частотомера, измерительный счетчик которого выполнен на микросхемах hcf4026bey, а остальная часть на cd40

Таким образом, внешнее ключевое устройство, пропускающее импульсы на вход счетчика в период измерения, уже тоже не нужно. Выключить индикацию, можно подав логический ноль на вывод

380.78kb.

16 12 2014
3 стр.


Сканирующий Микроэллипсометр

Структурная схема комплекса представлена на рисунке Внешний вид– на рисунке 2

35.75kb.

29 09 2014
1 стр.


Экспериментальные схемы

Экспериментальная схема – это схема проведения эксперимента, организующая распределение испытуемых по различным уровням независимой переменной. Есть две основные возможности такого

24.5kb.

12 10 2014
1 стр.


Н. Ю. Кузьмин Окуневский код в семантике тесинско-таштыкской раскраски масок

По техническим причинам редакторы книги изменили порядок изображений на рисунке к статье. Здесь он приводится в первоначальном виде

253.75kb.

14 09 2014
1 стр.


Реферат Данные, база данных, экспорт, импорт, soap сервер, soap клиент. Дипломный проект представлен в виде пояснительной записки объемом 72 страниц. Графическая часть состоит из 4 листов формата А1 четыре чертежа: «soap сервер

«soap клиент. Схема алгоритма», «Модель импорта данных. Схема взаимодействия модулей», «Модель экспорта данных. Схема взаимодействия модулей», и 2 плаката: «Схема работы системы»,

51.97kb.

07 10 2014
1 стр.


1 Башкирские полки в 1812-1814 годах: некоторые вопросы истории Глава II. Экспериментальная часть
472.76kb.

12 10 2014
2 стр.


Общая схема одиночного стрелочного перевода приведена на рисунке 1

Цель работы: изучить назначение, конструкцию, типы стрелочных переводы и область их применения, а также неисправности, при которых не допускается их эксплуатация

89.94kb.

11 10 2014
1 стр.


Пояснительная записка 1 3 Архитектурная часть : раздел марки ас 1

Схема расположения верхней арматуры в фундаментной плите на отм 900. Схема расположения дополнительной верхней арматуры

71.6kb.

06 10 2014
1 стр.