Перейти на главную страницу
Существенным является различие температур плавления МОКС и UO2 - у МОКС она ниже. Температура плавления соединения UO2-PuO2 снижается примерно пропорционально содержанию PuO2 от 2840C для чистого UO2 до 2390C для чистого PuO2. Из этих данных можно рассчитать, что температура плавления типичного МОКС будет на 20-40 градусов ниже температуры плавления оксида урана. При высоких степенях выгорания, температура плавления может еще понизиться. Это снижение не настолько велико, чтобы создавать опасность само по себе; но в сочетании с другими эффектами или в особых ситуациях оно может оказаться опасным.
Также известно, что теплопроводность МОКС монотонно падает по мере увеличения содержания плутония. Как и в предыдущем случае, этот эффект не опасен сам по себе, но он может оказать опасное влияние на термогидравлические параметры активной зоны реактора в некоторых особых условиях.
Имеются также некоторые различия в физико-механических свойствах (модуль Юнга, коэффициент Пуассона). В данном отчете они не рассматриваются. Отметим еще только возрастание выхода газообразных продуктов деления из МОКС по сравнению с UO2 -это отличие особенно заметно при высоких степенях выгорания.
- уменьшение поглотительной способности управляющих стержней (эти стержни поглощают избыток нейтронов, предотвращая переход в режим неконтролируемой цепной реакции). Это происходит из-за того, что МОКС сравнительно хорошо поглощает нейтроны низких энергий (медленные нейтроны), поэтому средняя энергия нейтронов оказывается выше, а управляющие стержни поглощают быстрые нейтроны хуже, чем медленные. По той же причине падает поглотительная способность бора, добавляемого в охлаждающую жидкость реактора с водой под давлением (РВД) (а также, в аварийных ситуациях, реактора на кипящей воде (РКВ)). Из-за этого оказывается недопустимым размещать топливные сборки с МОКС в непосредственной близости от управляющих стержней (в основном, именно из-за этого нельзя заменить на МОКС более чем одну треть загруженного в реактор уранового топлива).
- усиление отрицательности некоторых коэффициентов реактивности при низкой степени обогащения плутония: коэффициент реактивности описывает
изменение скоростей реакции деления (и, следовательно, мощности) в результате различных изменений ситуации в активной зоне, таких как появление пустот в охладителе, изменение температуры замедлителя (воды), температуры топлива и т.п. Увеличение отрицательности пустотного коэффициента делает более опасным схлопывание пустот в кипящем реакторе, а усиление влияния температуры замедлителя на мощность может быть опасным в реакторе с водой под давлением при некоторых переходных условиях (см. обсуждение в следующем разделе).
- усиление пика мощности. Из-за интенсивного поглощения медленных нейтронов плутонием возникает тенденция к неравномерному распределению мощности в активной зоне, с максимумом на границе между UO2 и МОКС, и особенно на границе между водой и МОКС-топливом. Для смягчения этого эффекта используют специальные конфигурации активной зоны со специально подобранными постепенно меняющимися уровнями обогащения в пределах топливной сборки. Это резко усложняет изготовление топливных стержней и их объединение в сборку; если же при этом будет допущена ошибка, возникает опасность аварии.
- сокращение доли запаздывающих нейтронов. Часть нейтронов испускается сразу при распаде ядра (они существуют затем в среднем еще одну микросекунду), а некоторые испускаются из ядер, возникших в результате деления ядра, с задержкой от десятых долей секунды до десятков секунд. Хотя доля запаздывающих нейтронов мала (0,7% и менее), контроль за ходом цепной реакции с помощью перемещения управляющих стержней, которые не могут перемещаться очень быстро, возможен только за счет этих запаздывающих нейтронов. Для 239Pu доля запаздывающих нейтронов примерно в три раза меньше, чем для 235U, что усложняет задачу контроля (особенно при высоких концентрациях 239Pu).
- ускорение износа материалов реактора. Поскольку, как указывалось выше, использование МОКС приводит к повышению средней энергии нейтронов, что в свою очередь «ускоряет процессы радиационного разрушения материалов реактора нейтронами. В результате сокращается срок службы деталей реактора, что может при определенных условиях создавать опасность аварии».
Следует принимать во внимание три составляющих радиологического риска:
- попадание плутония и других трансурановых элементов внутрь организма. Угроза, создаваемая попаданием плутония в легкие, была описана выше. Обращалось также внимание на более высокую токсичность реакторного плутония по сравнению с чистым изотопом 239Pu. Опасность вдыхания особенно затрагивает занятых на предприятиях по производству МОКС (а в случае выброса плутония в результате аварии на реакторе, использующем МОКС - и не только их). Последний случай рассмотрен подробнее ниже в этой главе.
- обучение -лучами, возникающими при распаде 241Am. При распаде 241Pu возникает 241Am, являющийся источником -лучей. Период полураспада для этого процесса равен 14,4 года. Отсюда получаем, что поскольку содержание изотопа 241Pu в реакторном плутонии равно 10-15%, примерно 0,5-0,7% от общего количества плутония ежегодно переходит в 241Am. Поэтому -активность выделенного плутония возрастает с течением времени прошло после переработки (из-за накопления 241Am), но в то же время она тем меньше, чем больше времени выдерживался материал до переработки (из-за распада 241Pu).
- нейтронное излучение. Быстрые (высокоэнергетичные) нейтроны являются одним из самых опасных видов ионизирующего излучения. Плутоний излучает нейтроны в результате двух процессов: при спонтанном распаде изотопов с четными массовыми числами (238Pu, 240Pu и 242Pu), а также в результате реакций -частиц, испускаемых при распаде плутония, с легкими элементами (например, с кислородом). В случае обычного МОКС-топлива основной вклад в излучение нейтронов вносят спонтанные распады 240Pu и реакции с участием -частиц.
В обществе всегда найдутся фанатики, сумасшедшие, жадные, неудовлетворенные и завистливые люди, которые способны украсть или передать плутоний и потом шантажировать общество угрозой применить его в разрушительных целях. В обществе всегда есть иностранные агенты, члены организованных преступных группировок или поставщики международного черного рынка ядерных материалов, заинтересованные в дестабилизации общества или в развитии и защите своей преступной деятельности. Если даже в настоящий момент и существуют какие-то ограничения или дефицит мотивации для использования плутония в преступных целях, в будущем эти аргументы могут отпасть по многим причинам. Поэтому ядерный терроризм является «реальной угрозой цивилизации» и вероятность его появления увеличивается.
Транспортировка выделенного плутония из Франции и Великобритании в Японию, хранение на складах/хранилищах, доставка из хранилища на завод производству МОКС-топлива, изготовление МОКС-топлива и топливных элементов из него - все эти звенья плутониевого топливного цикла могут стать мишенью нападения, саботажа и диверсии.
Один грамм реакторного плутония в равен суммарному годовому пределу на вдыхание плутония для 40 миллионов людей. Следует иметь в виду эти порядки величин, когда обсуждаются вопросы производства и хранения многих десятков тонн плутония.
Таким образом, утверждения плутониевой промышленности и непригодности реакторного плутония для изготовления взрывного устройства являются ложными и научно необоснованными.
Некоторые свойства МОКС могут оказать отрицательное влияние на работу реактора, в особенности на его поведение в определенных переходных режимах:
Как видно из проведённого анализа –МОКС – далеко не безопасный вариант утилизации плутония, однако, если из двух зол – плутоний и МОКС выбирать меньшее, то несомненно приоритет нужно отдать МОКС-топливу.
1. « Значение МОКС – топлива для изменяющегося мира», ДЖИНИЗАБУРО ТАКАГИ, Москва 2000 год.
2. Введение в ядерную физику; К.Н. Мухин, Москва , 1995 год
3. Ядерная энергетика; Б.Б. Кадомцев, В.И. Пистунович; 1994 г. Москва
5. Маргулис У.Я. Радиация и защита. — М.: Атомиздат, 1999 год
Научный консультант: А. Г. Компаниец, начальник смены ОАО «схк», участник ликвидации аварии на Чернобыльской аэс
27 09 2014
4 стр.
Фукуи дала разрешение на использование отработавшего ядерного топлива для реактора аэс «Такахама». Губернатор Фукуи выразил также готовность разрешить компании Kansai Electric Powe
12 10 2014
1 стр.
13 12 2014
1 стр.
Необходимо обеспечить увеличение глубины выгорания в 1,5 2 раза по сравнению с достигнутыми уровнями, уверенное удержание продуктов деления внутри твэлов, надежную работу топлива п
25 12 2014
1 стр.
Причины массового перехода на альтернативные виды топлива просты и понятны. Они не только экологически более чистые. Они при этом более дешевые. Так, в 2005 году по данным правител
18 12 2014
1 стр.
Котел водогрейный марки кв-гм-23,26-115 предназначен для получения горячей воды температурой 115 °С. В качестве сжигаемого топлива может использоваться газообразное или жидкое топл
12 10 2014
1 стр.
Постоянный дефицит газообразного топлива в нашей стране заставляет рационально использовать низкосортное твёрдое топливо. Одним из способов такого использования угля является предв
18 12 2014
1 стр.
01 10 2014
1 стр.