Перейти на главную страницу
Условия получения космических снимков существенно влияют на их геометрические и изобразительные свойства. Это, в свою очередь, определяет методологию и технологию фотограмметрической обработки снимков и интерпретацию изображений.
Основные отличительные особенности получения космических снимков:
Космическую съемку поверхности Земли проводят с пилотируемых космических аппаратов, орбитальных станций и беспилотных искусственных спутников Земли. Съемку могут выполнять космонавты в так называемом ручном режиме или автоматически по заданной программе.
Движется КЛА по сложной траектории, называемой орбитой. При съемке поверхности Земли используют эллиптические, параболические и гиперболические орбиты.
При движении КЛА по эллиптической орбите Земля находится в одном из фокусов эллипса. Точка орбиты, расположенная ближе к центру Земли, называется перицентром (перигеем), а наиболее удаленная — апоцентром (апогеем).
Параболические или гиперболические орбиты соответствуют траектории движения КЛА по параболе или гиперболе.
При съемке Земли или иных планет возможны варианты получения изображения: при подлете, отлете или при прохождении мимо планеты КЛА.
Существенный недостаток съемок с КЛА, находящихся на перечисленных орбитах, — изменение удаленности съемочной системы от снимаемой поверхности. Пропорционально изменению высоты съемки изменяется масштаб получаемых снимков.
Съемку можно выполнять со спутников Земли, находящихся на геостационарных орбитах. При этом варианте съемки положение спутника относительно поверхности не изменяется, так как его угловая скорость движения равна угловой скорости движения земной поверхности. При съемке с геостационарных спутников получают информацию об одной территории практически в любое время. Результаты съемки можно использовать для мониторинга этой территории с различным временным интервалом.
Наиболее приемлемыми являются круговые орбиты КЛА. Круговые орбиты представляют собой окружности с центром, совпадающим с центром Земли (рис.). Радиус таких орбит r определяют как сумму радиуса Земли и высоты полета Н летательного аппарата. Средний масштаб снимков при съемке с круговых орбит практически одинаков. Полосы снимаемой поверхности (полосы обзора), захватываемые с каждого витка летательного аппарата, также примерно одинаковы.
Пересечение
плоскости
орбиты с
Землей
П лоскость орбиты КЛА пересекает плоскость экватора под некоторым углом i, который называют наклонением орбиты (см. рис.). Если наклонение орбиты равно 90°, то ее плоскость проходит через полюсы Земли. Такая орбита носит название полярной. При наклонении равном 0°, плоскость орбиты КЛА совпадает с экватором, поэтому ее называют экваториальной. Использование полярной и близполярной орбиты обеспечивает выполнение съемки всей поверхности за счет вращения Земли вокруг своей оси. При уменьшении наклонения орбиты сокращается территория, захватываемая съемочной аппаратурой. Периодичность (частота) съемки одной и той же территории в зависимости от параметров полета КЛА может быть от 4 раз в сутки до 5...6 раз в месяц и реже. Регулярная повторяемость съемки позволяет применять получаемые материалы для обновления мелкомасштабных топографических и специальных карт, а также осуществлять мониторинг больших территорий.
От параметров полета зависит время возвращения летательного аппарата в заданную точку. Это связано с тем, что при наклонении орбиты, не равном нулю (i > 0), а также из-за вращения Земли точка пересечения орбиты КЛА с экватором смещается. Если на данном витке КЛА прошел над точкой i экватора, то после оборота вокруг Земли он пройдет уже над точкой 2 экватора, затем над точкой 3 и так далее. Время возврата КЛА в исходную (или заданную) точку над поверхностью Земли в зависимости от параметров полета составляет 1...30сут и более. Положение КЛА, а следовательно, положение съемочной аппаратуры в пространстве определяют в географических координатах.
В зависимости от фокусного расстояния используемой съемочной системы и высоты полета КЛА снимки получают в масштабе от 100 000 до 10000000.
Один из главных факторов, влияющих на качество изображений - огромная скорость движения КЛА, приводящая к фотографическому смазу.
2. Особенности космической фотосъемки
Технические средства получения космических снимков аналогичны фотографическим системам, применяемым при аэрофотосъемке. Существуют топографические фотокамеры и дешифровочные.
Формат космических снимков различен — от размера 70 х 90 мм до 30 х 30 см и более. Например, снимок, полученный панорамной камерой высокого разрешения КВР-1000, имеет формат 190 х 700 мм. При одинаковых параметрах съемки (f, H, рх, ру) использование снимков с большим форматом имеет преимущества: во-первых, позволяет увеличить площадь захвата на поверхности Земли, во-вторых, при фотограмметрической обработке повышается точность определения высот точек местности.
При съемке с КЛА, движущихся по эллиптическим орбитам, изменяется высота фотографирования. Вследствие этого средние масштабы смежных снимков имеют значительные различия.
В связи с изменением высот фотографирования при постоянной скорости движения КЛА возникает необходимость изменять интервал времени между моментами съемки. Это необходимо для обеспечения постоянного заданного значения продольного перекрытия снимков. Интервал фотографирования меняют с помощью специального автоматического устройства, входящего в комплект космического фотоаппарата.
При космическом фотографировании поперечное перекрытие снимков обеспечивается тремя приемами. В первом случае за счет вращения Земли: при этом снимки, получаемые с последующего витка, перекрываются со снимками предыдущего витка (виток аналогичен маршруту при аэрофотосъемке). Если съемка выполняется при движении КЛА по полярной или близполярной орбите, поперечное перекрытие снимков будет непостоянным. Вблизи экватора перекрытие будет минимальным, в районе полюсов — максимальным. Чтобы поперечное перекрытие находилось в заданных пределах, необходимо согласование скорости обращения КЛА со скоростью вращения Земли.
Во втором случае перекрытие снимаемой полосы осуществляется поперечным наклоном (креном) летательного аппарата. Угол крена должен обеспечить заданное поперечное перекрытие снимков.
В третьем случае продольное перекрытие снимков обеспечивается разворотом КЛА, при котором выполняется наклон главной оптической оси съемочной системы «вперед» по направлению полета — предыдущий снимок и «назад» — последующий снимок.
Рис. Схема съемки с разворотом КЛА
Существенное отличие космической съемки - изображение на одном снимке территории площадью в несколько тысяч квадратных километров. При этом на геометрии построения плоского изображения сказывается кривизна Земли. Точки земной сферической поверхности проецируются по законам центральной проекции на плоскость, в которой находится фотопленка. За счет этого на краях снимка масштаб изображения мельче по сравнению с его центральной частью.
При съемке с круговых орбит фотосъемку выполняют таким образом, чтобы оптическая ось фотокамеры была направлена по направлению нормали к поверхности Земли. Это частный случай конвергентной съемки. При этом взаимный угол, образованный оптическими осями двух смежных снимков стереопары, не превышает нескольких градусов.
На рубеже XX века в нашей стране, наряду с государственными программами выполнения космических съемок, появились коммерческие космические программы. Первый коммерческий спутник был запущен российской ракетой-носителем с космодрома на Дальнем Востоке в январе 1997 г. Крупнейшие авиационные и космические компании участвуют в осуществлении собственных программ. Образовался рынок фотографических и цифровых изображений. Потребитель в соответствии с решаемой задачей, из публикаций или по Интернету выбирает из предлагаемых каталогов наиболее приемлемые для него материалы съемок. На околоземных орбитах находятся несколько десятков космических летательных аппаратов с различными съемочными системами на борту. Получаемая при этом разноплановая информация — изображения или результаты измерений определенных характеристик объектов на поверхности Земли или атмосферы — передается на пункты приема тех стран или коммерческих структур, по заказу которых осуществляют данную съемку. Космические летательные аппараты отличаются параметрами полета, а съемочные системы имеют различные характеристики. Наземные комплексы приема и первичной обработки космической информации находятся в различных городах страны.
Наиболее известные и используемые в мире данные получают с зарубежных космических аппаратов NOAA, LANDSAT, SPOT, IRS, RADARSAT, ERS (табл.1).
Высокие изобразительные и метрические качества имеют фотографические снимки, полученные с отечественного спутника «Комета» камерами специального назначения КВР-1000 и топографической ТК-350. Среди российских пользователей для изучения природных ресурсов используют снимки со спутников типа «Метеор», «Ресурс-Ф», «Ресурс-О, «Океан», съемочные системы «Фрагмент», МСУ-Э, МСУ-СК (табл.2). Съемка с периодически запускаемых на орбиты спутников позволила создать архивы изображений на различные районы земной поверхности, что дает возможность осуществлять мониторинг территорий и отдельных объектов и явлений.
Серия спутников LANDSAT (США) функционирует с начала семидесятых годов XX века. Съемку проводят с высоты орбиты 900 км. На спутниках используются многозональные съемочные системы типа MSS с линейным разрешением на местности 55 х 80 м.
В целях мониторинга кадастровой информации и создания картографической продукции масштабов 1:М = 1:5000...1:10 000 могут быть использованы космические съемочные системы высокого разрешения. Например, космические изображения земной поверхности, получаемые со спутников IKONOS и QUICK BIRD (США). Они имеют соответственно разрешение на местности 0,61 м и 1 м. Точность фотограмметрического определения координат точек по снимкам спутника QUICK BIRD, снятых в панхроматической зоне (0,45...0,95 мкм) и с использованием опорных точек, составляет 2 м, без опорных точек — 23 м.
Французская съемочная система SPOT IMAGE, установленная на спутниках типа SPOT, имеет четыре спектральных канала (4-й канал соответствует 1,55...1,75 мкм). Линейное разрешение при панхроматической съемке равно 5... 10 м, а при многозональной — 20 м. Важное преимущество данной системы — возможность получения снимков с перекрытием (получение стереопар), что позволяет проводить стереофотограмметрическую обработку снимков. Снимок захватывает участок на земной поверхности размером примерно 60 х 60 км.
Индийские спутники последнего поколения (IRS-1C, IRS-1D) оснащены съемочными системами, работающими в четырех спектральных каналах. Панхроматические снимки получают с разрешением 5...6 м, а зональные — 23 м и более.
Разработка компактных радиолокационных съемочных систем с малым потреблением энергии позволила использовать их при космических съемках. Радарные изображения, получаемые, например, с канадского спутника RADARSAT или европейского ERS, имеют разрешение 25 м. Современные методы радиолокации позволяют получать изображения с разрешением на местности до 5 м и менее. Изменяя ориентацию спутника в полете на соседних орбитах, можно производить стереорадиолокационную съемку. Существующие компьютерные программы позволяют выполнять фотограмметрическую обработку радарных снимков. При этом учитывается специфическая геометрия радиолокационных изображений, производится построение цифровых моделей рельефа как по стереопаре, так и с использованием методов радарной интерферометрии (определение геометрических параметров объектов на основе интерференции отраженных от них радиоволн).
Фотографические снимки, полученные со спутника «Комета» кадровыми камерами КВР-1000 (фокусное расстояние f= 1000 мм), имеют разрешение 2 м. Топографическая камера ТК-350, установленная на спутнике «Комета», позволяет производить съемку с перекрытиями. Разрешение изображения данных снимков—10м. Результаты стереофотограмметрической обработки снимков используют для создания и обновления мелкомасштабных планов и карт. Спутники «Комета» запускают на срок до 1 мес.
Широко используют фотографические изображения, получаемые со спутников серии «Ресурс-Ф», оснащенные фотографическими камерами КФА-1000, КФА-3000, КАТЭ-200 и четырехканальным фотоаппаратом МК-4.
На территории страны имеется большое число региональных пунктов приема космических изображений, получаемых со спутника «Ресурс - О». На спутнике установлены многозональные сканеры МСУ-Э с разрешением 45 м и МСУ-СК с разрешением 150 м. Благодаря свободному доступу снимки широко используют в отечественных организациях, занимающихся исследованиями природных ресурсов.
Для широкого пользования разработаны и применяют станции приема и обработки изображений (низкого и среднего разрешения) земной поверхности. Аппаратно-программные комплексы включают: персональные компьютеры, антенную систему, устройство сопряжения антенной системы с компьютером и программное обеспечение. С помощью параболической антенны, установленной на поворотном устройстве, принимают передаваемые со спутника изображения. Программные средства обеспечивают слежение за спутником, автоматический прием данных, их визуализацию, просмотр и оценку. Визуализация изображения производится в черно-белом или цветном варианте, осуществляется синтезирование зональных снимков. Проводится географическая привязка всего снимка или его фрагмента, а также программными средствами рассчитываются географические координаты для каждого пикселя изображения. Выполняется фотограмметрическое преобразование изображений, составляются накидные монтажи. Программные средства позволяют выполнить тематическую обработку изображений и представить результаты обработки в картографическом виде.
При картографировании земной поверхности используют различные картографические проекции. Задачи организации территорий, земельного и городского кадастра, инженерных изысканий удобнее решать по планам, созданным по законам ортогонального проецирования, — точки элементов ситуации при этом проецируют на горизонтальную плоскость отвесными линиями с одновременным масштабированием результатов.
На снимках, полученных с помощью кадровых съемочных систем, изображение, как отмечалось ранее, строится по законам центрального проецирования. Проектирующие лучи здесь представляют собой пучок линий, проходящих через единую точку — центр проекции.
Основные элементы центральной проекции следующие:
Рис. 1. Основные элементы центральной проекции
voV — проекция главной вертикали;
С - проекция точки нулевых искажений;
Горизонтали могут проходить через любую точку картины, например через точку о — hoho или точку с — hchc. В одной из систем координат снимка главную вертикаль vov принимают за ось абсцисс, а любую из горизонталей — за ось ординат.
Точки о, п, с располагаются на главной вертикали, а точки О, С, N— на ее проекции. Отстояния точек n и с от точки о определяют по формулам:
и
(1)
Эти точки, в общем случае, близки друг к другу. Например, на плановых снимках при аР= 2° и f = 100 мм on = 3,5 мм и ос=1,8 мм, а на снимках, полученных с использованием гиростабилизированной АФУ, при аР= 20' on = 0,6 мм и ос = 0,3 мм. Это положение неоднократно будем использовать в дальнейшем при анализе метрических свойств снимков и описании технологии их применения.
Расстояние oS— главное расстояние, и обозначают его буквой f. В фотограмметрии этот отрезок называется фокусным расстоянием съемочной камеры. Расстояние SH = Н называют высотой съемки.
Рис. 3. Наклонный снимок равнинной местности
Рис. 4. Смещение точек снимка вследствие его наклона
Значение δа для точек, расположенных не на главной вертикали, будет зависеть также от угла φ, отсчитываемого от положительного направления главной вертикали до направления, исходящего из точки с на анализируемую точку, например на точку а (рис.5), против хода часовой стрелки.
где rс — отстояние определяемой точки снимка от точки нулевых искажений.
Рис.5 Правило измерения углов φ при определении смещения точек снимка вследствие его наклона
так как выражение имеет существенно меньшее значение в сравнении с величиной f. В формуле
выражены через хс — абсциссу точки в системе координат vov — ось х, hchc — ось у (рис. 5).
Горизонталь hchc называют линией неискаженных масштабов. На прочих горизонталях масштаб также будет постоянным, но на каждой горизонтали свой. Его выражают формулой:
в которой хс — абсцисса горизонтали при начале координат в точке с. Масштаб вдоль главной вертикали определяют по формуле:
Масштаб по произвольному радиальному направлению может быть вычислен по формуле:
В результате анализа формул 5 и 7 можно установить:
Ранее установлено, что наиболее интенсивно масштаб снимка изменяется вдоль главной вертикали. Поэтому допустимость выполнения метрических действий непосредственно по снимку равнины должна определяться именно по этому направлению. Критерием допустимости может быть среднее относительное отклонение знаменателя масштаба изображения вдоль главной вертикали (mvv) от знаменателя главного масштаба снимка (m):
Аэрофотосъемку в целях создания кадастровых планов и карт выполняют преимущественно с использованием гиростабилизированных АФУ. Поэтому в большинстве случаев метрические действия непосредственно на снимках равнины можно выполнять с использованием единого главного масштаба, определяемого по известным значениям/и Н, с помощью измерений в натуре базисов или по координатам опознанных на снимках точек геодезической опоры.
Для поиска путей решения той же задачи при недостаточной точности использования среднего масштаба рассмотрим рисунок 8.7, на котором тонкими линиями показана сетка квадратов (прообраз) с поворотными пунктами общей границы ао, b$, do и /0, а также преобразованное за наклон снимка изображение прообраза. Поворотными пунктами последнего будут a, b, du I.
Для повышения наглядности характера преобразования в данном случае использован простейший вариант — главная вертикаль снимка vov проходит через центр сетки и совпадает с одним из направлений ее сторон. Квадраты при этом преобразуются в трапеции. В общем же случае — в четырехугольники более сложной конфигурации. Для иллюстрации этого утверждения воспользуемся репродукцией картины Н. Н. Ге (рис. 8.8), на которой квадратные элементы пола наблюдаются под значительным углом (в нашей терминологии — под углом съемки ар) случайного направления.
Вернемся к рисунку 8.7. При существенном изменении масштаба изображения квадратов в пределах всей сетки, например в зонах при точках avid (обозначены окружностями), в пределах каждой из этих зон разномасштабность существенно меньшая.
Рис. 8. Иллюстрация перспективного искажения произвольно ориентированной сетки квадратов относительно направления главной вертикали
где хс — абсцисса центра измеряемого участка в принятой ранее системе координат.
Проанализируем приведенную формулу:
искажение площади уменьшается с увеличением f и соответственным увеличением высоты съемки;
искажение уменьшается также с приближением участка к горизонтали hchc . Площади участков, центр которых расположен на горизонтали hchc, не искажаются.
Поскольку положение горизонтали обычно не известно, то это заключение имеет чисто теоретическое значение. Но в частном случае площади участков, центр которых совмещается с главной точкой (строго — с точкой с), за наклон снимка не искажаются.
Очевидно, искажения площадей участков за наклон снимка в определенных его частях будут близкими между собой и могут оказаться в пределах установленных норм. Это значит, что, используя частные масштабы зон, площади участков можно определять непосредственно по снимкам.
Определить искажения направления за наклон снимка можно с помощью рисунка 9. Исследуемое направление проходит через точки а и b (на рисунке показана правая верхняя часть снимка). Это направление пересечется с горизонталью hchc в точке к под углом . Опустив на линию аb перпендикуляр, получим точку d. Угол, образованный направлениями перпендикуляра и главной вертикали, будет также равен А.. Введя в положение точки d поправку, определенную по формуле (2), найдем не смещенное за угол наклона снимка положение этой точки —
. Наклонный и горизонтальный снимок пересекаются по линии hchc. Это значит, что точка к принадлежит и неискаженному направлению, проходящему через точку
. Угол
, образованный при этом, будет выражать значения искажения направления за наклон снимка.
Рис. 9. Геометрическая интерпретация искажения направления на наклонном снимке
где — кратчайшее расстояние от точки с до исследуемого направления.
Положения точки с и главной вертикали обычно неизвестны. Поэтому полученную формулу применяют при определении возможности использования конкретных снимков для решения графических задач непосредственно по снимкам, вычисляя при этом предельные искажения. Для этого можно использовать упрощенную формулу при различных аргументах и фокусных расстояниях
где — отстояние определяемой точки на снимке от точки надира; h — превышение точки над горизонтальной плоскостью, принятой за исходную; H—высота съемки над той же плоскостью; т — знаменатель масштаба изображения, отнесенного к той же плоскости.
Рис. 11. Влияние рельефа местности на масштаб изображения различно расположенных на земной поверхности отрезков
По результатам центрального проецирования реальных линий местности можно сделать следующие выводы:
изображение линий, наклоненных от точки S, в центральной проекции всегда будут меньше изображения их в ортогональной проекции. С увеличением угла наклона участка точки А и В могут оказаться на одном проецирующем луче. Линия АВ в этом случае изобразится на снимке точкой, а участок местности — линией. При дальнейшем увеличении угла (скаты балок, оврагов и др.) участок окажется в «мертвой зоне» и совсем не отобразится на снимке;
изображение линий, наклоненных к точке S, всегда крупнее изображения их ортогональной проекции. Очевидно, наибольшее различие будет в случае, когда линия будет перпендикулярной проецирующему лучу, проходящему через ее середину;
масштаб изображения линий, располагающихся вдоль ската наклонных участков, будет зависеть от их ориентации относительно центра проекции, значения угла их наклона и отстояния изображения участка от точки надира.
Масштаб изображения ровных горизонтальных участков местности BD и KL зависит от их высоты или, иными словами, от высоты фотографирования над этими участками. Среднее относительное изменение масштаба изображения таких участков можно выразить формулой:
где — разность знаменателей масштаба изображения разновысоких равнинных участков;
— среднее значение знаменателей масштаба этих участков; h — превышение между участками;
— средняя высота съемки.
Очевидно, что масштаб изображения наклонных участков по топографической горизонтали будет постоянным и зависит от ее высоты.
Искаженная за влияние рельефа сетка показана на рисунке 12 утолщенными линиями. Здесь за исходную принята сетка (показана тонкими линиями), преобразованная за наклон снимка. Граница прообраза обозначена утолщенным пунктиром.
Для получения искаженной за рельеф сетки в положение каждого узла ее введены смещения, рассчитанные по формуле:
где r'n — расстояние от точки надира до смещаемой точки.
Из рисунка видно, что на участках со спокойными затяжными скатами (на рис. 8.12 между горизонталями с отметками 20 и 40 м) метрические действия непосредственно по снимку можно выполнять аналогично тому, как это делают на наклонных снимках равнинной местности.
При работе на снимках сильно пересеченной местности, особенно с некрупными формами рельефа, работа с частными масштабами может оказаться малопроизводительной. Метрические действия непосредственно на снимках станут невыгодными.
Рис. 12. Искажение сетки квадратов вследствие совместного влияния наклона снимка и рельефа местности
где — погрешность в площади, обусловленная влиянием рельефа; r—максимальное отстояние центра участка от главной точки снимка (строго от точки надира);
— максимальный угол наклона участков снимаемой территории.
Я. И. Гебгартом предложена формула для определения . Как и в предыдущем случае, знание искажения может оказаться полезным только для определения возможности выполнения на конкретных снимках метрических или проектных действий. Поэтому воспользуемся преобразованной формулой для вычисления максимальных искажений направлений
где l—отрезок прямой, искажение направления которого определяют.
Для случая, когда r= 1= 90 мм, и различных отношений Л и Я максимальные искажения направлений составят:
h/H |
1/5 |
1/10 |
1/20 |
1/40 |
![]() |
11° |
6° |
3° |
1,5 |
Отметим, что в данном случае рассматривают искажение направления, проходящего пространственно через некоторую пару точек, — геометрическое направление. Для выяснения возможностей выполнения проектных работ непосредственно на снимках важно также знать, как влияет рельеф на изменение формы линий, проходящих по земной поверхности.
Анализируя рисунок 13, можно сделать следующие выводы:
прямая в натуре линия не будет деформирована, если проходит она по плоскому, сколь угодно наклоненному участку местности. Примером может служить звено линии
Очевидно, идеально прямолинейная в плане трасса шоссе изобразится на снимке криволинейной, если она проходит по всхолмленной местности и не совпадает с проекцией точки надира.
Рассмотренные ранее факторы не нарушают строгости центральной проекции — влияние их обусловливает только отклонение результатов проецирования от ортогональной проекции снимаемого объекта. Аналогично на геометрию снимка влияет кривизна Земли. Расстояние некоторой точки снимка (на рис. 14 точки а) от точки надира сократится при этом на значение
где R — радиус Земли.
При крупномасштабных съемках с использованием камеры f= 200 мм максимальное смещение точек изображения будет порядка 0,004 мм, что не повлияет существенно на точность построения плана — влияние кривизны Земли меньше точности измерения на снимке.
Ряд факторов (атмосферная рефракция, дисторсия объектива съемочной камеры, деформация фотопленки, непараллельность плоскостей стеклянного светофильтра, неточность выравнивания аэропленки и др.) нарушают строгость центральной проекции. Однако съемка со сравнительно малых высот современными камерами с использованием новейших фотоматериалов не приведет к погрешностям, выходящим за пределы нескольких микрометров. К тому же некоторые из них, например дисторсию объектива, систематическую деформацию фотоматериалов, учитывают при высокоточных фотограмметрических работах.
Ранее установлено, что метрические свойства снимков зависят в основном от их наклона и рельефа местности.
Влияние этих факторов различно. Значение аргумента в формулах (2)...(11) может быть любым (в допустимых пределах), но постоянным для каждого снимка. Поэтому распределение значений смещения точек с соответствующим изменением масштаба изображения и искажением площадей и направлений будет строго регулярным по полю снимка (см. рис. 7 и 8). Рельеф местности в зависимости от его характера влияет на метрические свойства снимка различно. При съемке сильно пересеченной местности с беспорядочным изменением направлений и крутизны скатов изменение масштаба изображения отдельных участков в пределах кадра с соответствующим искажением длин линий, площадей и др. можно отнести к случайным. Земли, используемые в сельскохозяйственном производстве, редко располагают на таких территориях. Укрупнение съемочного масштаба с соответствующим сокращением отображающейся в кадре земной поверхности сокращает степень стохастичности экспозиций отдельных участков. При выполнении работ по инвентаризации приусадебных земель метрические операции выполняют обычно автономно в каждом населенном пункте. Последние располагают в большинстве случаев на территориях, представляющих собой односкатные плоскости, реже — сочетания двух-трехскатных плоскостей с разными направлениями скатов. Поэтому вероятностный подход к определению совместного влияния анализируемых факторов будет некорректным. Более правильным в данном случае будет определение предельного совместного влияния этих факторов на геометрию снимка с последующей оценкой приемлемости непосредственного использования снимков для измерительных целей.
Предельным искажение будет в случае, когда направление главной вертикали совпадет с направлением ската участка. Предельное относительное искажение площадей можно определить, например, по формуле
Поскольку направление главной вертикали не известно, то максимальное значение х можно заменить отстоянием наиболее удаленного угла рабочей площади снимка от его главной точки.
Величину в упрощенном, но достаточно точном варианте
можно определить по формулам (10), (16) и формуле:
(8.19)
Особенности центральной проекции — неравенство метрических характеристик в центральной части снимка и на его периферии — можно использовать для непосредственных измерений центральной зоны каждого снимка. Масштаб для такой зоны будет практически единым. Размеры зоны (радиус окружности) с допустимыми искажениями определяют по формулам, приведенным в данной главе. Пример ограничения такой зоны показан на рисунке 12 пунктирной окружностью. Периферийные части снимков используют обычным образом.
Эти же формулы используют и для определения параметров новой съемки с заданными метрическими характеристиками всего снимка или в пределах его рабочей площади.
Основная задача фотограмметрии — топографическое картографирование, а также создание специальных инженерных планов и карт, например кадастровых
14 12 2014
4 стр.
Тема Вводная лекция. Понятие композиции. Цели и задачи курса. Место курса основ композиции в специальных
01 10 2014
1 стр.
Единая транспортная система обеспечивает согласованное развитие и функционирование всех видов транспорта с целью максимального удовлетворения транспортных потребностей при минималь
06 10 2014
3 стр.
Преподаватель Детской Музыкальной Школы по классу «Блокфлейта», «Саксофон», «Ансамбль», «Предмет по выбору. Саксофон». г. Петрозаводск
08 10 2014
1 стр.
Вводная лекция – принципы фотолитографии (прямая и обратная), термическое испарение из трубочек
14 12 2014
1 стр.
Вводная лекция. Создание системы «метрополия зависимый мир». Тропическая и Южная Африка в эпоху колониализма
14 09 2014
4 стр.
Вводная лекция. Цели и задачи бизнес-планирования. Инновационная деятельность в апк
27 09 2014
1 стр.
Музыкальная тема, способы ее изложения. Музыкальный образ. Определение связи музыкального образа с театрально сценическим. Связь образа с программным замыслом композитора
17 12 2014
1 стр.