Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1страница 2страница 3страница 4
Тема 1. Вводная лекция.

План:
Фотограмметрия - техническая наука о методах определения метрических характеристик объектов и их положения в двух- или трехмерном пространстве по снимкам, полученным с помощью специальных съемочных систем. Такими системами могут быть традиционные фотографические камеры, а также системы, ис­пользующие иные законы построения изображения и иные (кро­ме фотографических слоев) регистраторы электромагнитных излу­чений. Основная задача фотограмметрии — топографическое кар­тографирование, а также создание специальных инженерных пла­нов и карт, например кадастровых.

Фотограмметрические методы позволяют также экономично и достаточно точно решать непосредственно по снимкам некоторые прикладные задачи, например измерять площади участков мест­ности, определять их уклоны, получать количественные характе­ристики эрозионных процессов, выполнять вертикальную плани­ровку с определением объема земляных работ и др.

Это направление метрической обработки снимков принято на­зывать прикладной фотограмметрией.

Метрической обработке снимков обычно предшествует (иногда совмещается) процесс отбора подлежащих нанесению на изго­тавливаемые планы и карты объектов, которые опознают на ана­лизируемых изображениях, определяют их качественные и коли­чественные характеристики, положение границ и выражают полу­ченные данные условными знаками. Этот процесс называют де­шифрированием снимков. В процессе дешифрирования выполняют также досъемку не отобразившихся на снимках элементов ситуа­ции.

В двадцатые годы прошлого столетия были сделаны попытки использования аэрофотоснимков для специализированного изу­чения лесов и в начале тридцатых годов — почв. Создание косми­ческих летательных аппаратов и съемочных систем, работающих в более широком диапазоне электромагнитных излучений с опера­тивной доставкой по радиоканалам результатов съемки на пункты приема, активизировало развитие этого направления. Оно полу­чило название «дистанционное зондирование».

Под дистанционным зондированием понимают неконтактное изучение Земли (планет, спутников), ее поверхности, близповерхностного пространства и недр, отдельных объектов, динамических процессов и явлений путем регистрации и анализа их собственно­го или отраженного электромагнитного излучения. Регистрацию можно выполнять с помощью технических средств, установлен­ных на аэро- и космических летательных аппаратах, а также, в ча­стных случаях, на земной поверхности, например при исследова­нии динамики эрозионных и оползневых процессов, в гляциоло­гии и др.

Принципиально к дистанционному зондированию можно от­нести известные методы исследования недр Земли — сейсмораз­ведку и гравиразведку, сканирующую эхолоцию дна водоемов и др. В изучении земельных ресурсов, кадастре, земельном и эколо­гическом мониторинге используются методы зондирования толь­ко с помощью электромагнитных излучений.

Дистанционное зондирование, интенсивно развиваясь, выде­лилось в самостоятельное направление использования снимков. Международное фотограмметрическое общество (МФО), в кото­рое входил СССР и входит ныне Россия, в 1980 г. преобразовано в Международное общество фотограмметрии и дистанционного зондирования (МОФ и ДЗ).

Взаимосвязь основных направлений использования снимков и наименования направлений может быть представлена схемой.


Дешифрирование (интерпретация) технологически входит од­новременно в обе части названия дисциплины. В дистанционном зондировании роль дешифрирования превалирующая.

Изучение дисциплины «Фотограмметрия и дистанционное зондирование» опирается на знание дисциплин: математика, ин­форматика, физика, экология, почвоведение, инженерное обуст­ройство территории, геодезия, географические информационные системы (ГИС).

Знания, приобретенные при изучении данной дисциплины, позволяют специалистам, работающим в области землеустрой­ства, формирования кадастра недвижимости, мониторинга зем­лепользования и охраны окружающей среды, получать или ква­лифицированно заказывать и использовать цифровые кадастро­вые планы и карты, а также получать сопутствующие специаль­ные карты.


Тема 2. Дистанционное зондирование территории

План лекции:



  1. Понятие и методы дистанционного зондирования территории

  2. Электромагнитное излучение и его свойства

  3. Методы дистанционного зондирования




  1. Понятие и методы дистанционного зондирования территории

Дистанционное зондирование (ДЗ) означает получение информации о состоянии исследуемой территории по измеренным на расстоянии, без непосредственного контакта датчиков с поверхностью, характеристикам электромагнитного излучения.

Используется широкий диапазон излучений от 0.4 мкм -30 м. В связи с этим используются различные средства съемки: фотографические, телевизионные, сканирующие, радиолокационные и др. Датчики могут быть установлены на космических аппаратах, самолетах и других носителях. Диапазон измеряемых электромагнитных волн - от долей микрометра (видимое оптическое излучение) до метров (радиоволны).

Методы ДЗЗ:


  • пассивные, т.е. использовать естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной радиацией,

  • активные - использующие вынужденное излучение объектов, инициированное искусственным источником направленного действия.

Сама возможность идентификации и классификации объектов по информации ДЗЗ основывается на том, что объекты разных типов - горные породы, почвы, вода, растительность и т.д. - по-разному отражают и поглощают электромагнитное излучение в том или ином диапазоне длин волн.

Рис.1. Поглощение и отражение объектами ЭМ излучения

Данные ДЗЗ, полученные с датчиков космического базирования, характеризуются большой степенью зависимости от прозрачности атмосферы. Поэтому на космических аппаратах устанавливаются многоканальные датчики пассивного и активного типов, регистрирующие электромагнитное излучение в спектральных диапазонах, расположенных в "окнах прозрачности" земной атмосферы.

Методика тематического анализа данных ДЗЗ заключается в определении спектральных диапазонов, чувствительных к изменениям спектральных свойств целевых объектов и выборе зависимостей, связывающих значения дистанционно измеренных яркостей с искомыми параметрами среды (состав, влажность, структура почв при мониторинге почв, типы растительности, уровни вегетации, проективное покрытие при мониторинге фитоценозов, содержание фитопланктона, минеральных взвешенных веществ, органического вещества при мониторинге водной среды и т.п.). Достоверность количественных результатов анализа определяется тем, известны или нет на момент измерений точные значения коэффициентов зависимостей между параметрами среды и спектральными характеристиками целевых объектов. Наиболее часто встречающийся способ повышения достоверности - проведение одновременно с космической съемкой тестовых измерений на репрезентативных участках.

Оперативное дистанционное зондирование Земли методами аэро- и космической съёмки в кратчайшие сроки даёт людям информацию об изменении поверхности. Информация такого рода на большие территории служит для мониторинга как географических, так и техногенных процессов, анализ которых приносит значительную эффективность при управлении сферами человеческой жизнедеятельности.

 Но в первую очередь, аэрофотосъёмка находит широкое применение в топографии - научной дисциплине, занимающейся подробным изучением земной поверхности в геометрическом отношении и разработкой способов отображения этой поверхности на плоскости в виде топографических карт и планов. Практические работы по созданию оригинала топографических карт называются топографическими съёмками. Основным видом съёмки в целях картографирования территории России является аэрофототопографическая съёмка.


2. Электромагнитное излучение и его свойства

Солнечное излучение, достигая Земли, частично отражается ее поверхностью, а частично поглощается, превращается в тепловую энергию и составляет собственное излучение Земли. Отраженная и излучаемая Землей радиация имеет волновую и корпускулярную природу и представляет спектр электромагнитных колебаний. Часть спектра от 0,4 до 0,7 мкм воспринимается человеческим зрением и называется видимой областью спектра.




Цвет

Длина волны, мкм

Фиолетовый

0,40 – 0,45

Синий

0,45 – 0,49

Зеленый

0,49 – 0,58

Желтый

0,58 – 0,60

Оранжевый

0,60 – 0,62

Красный

0,62 – 0,70



Рис. 2. Прозрачность атмосферы


Но среди света, отражаемого поверхностью Земли, присутствуют лучи с длинами волн короче 0,4 мкм, названные ультрафиолетовыми, и от 0,7 мкм до 3 мкм — ближними инфракрасными (ИК).

Более длинноволновая часть спектра, где преобладает собственное излучение Земли, делится на инфракрасный тепловой- и радиодиапазоны. Инфракрасный тепловой диапазон с длинами волн от 3 до 1000 мкм — это излучение земной поверхности в виде тепла, накопленного в результате превращения световой энергии в тепловую. Большая часть этого излучения поглощается атмосферой. Радиодиапазон включает длины волн больше 1 мм. В этом диапазоне можно регистрировать не только собственное излучение Земли, но и излучение, создаваемое искусственным источником.

Поступающее на земную поверхность солнечное излучение проходит через атмосферу, значительно преобразующую его. Прозрачность атмосферы неодинакова по спектру (рис. 2). Излучение одних участков спектра (их называют окнами прозрачности) почти беспрепятственно проходит через атмосферу, излучение других большей частью отражается (рассеивается) или поглощается ею.

Поглощение атмосферой излучения (рис. 3) зависит прежде всего от поглощения парами воды, а также углекислым газом, озоном. В видимой области спектра атмосфера достаточно прозрачна.

Рис. 3. Приход солнечной радиации:

1 — на верхнюю границу атмосферы; 2 — на поверхность моря
Только облака могут существенно поглощать излучение. В инфракрасной области поглощение самое высокое, здесь существуют лишь окна прозрачности: ближнее в интервале от 3 до 5 мкм и дальнее — от 8 до 14 мкм. Ближнее окно используется для регистрации отраженного солнечного излучения, а дальнее — собственного излучения Земли. Для волн радиодиапазона атмосфера полностью прозрачна, что делает актуальным совершенствование средств регистрации излучения в этой части спектра.

Рассеяние в атмосфере происходит на молекулах и аэрозолях. Согласно закону Рэлея, интенсивность рассеяния частицами, размеры которых меньше длины световой волны, обратно пропорциональна четвертой степени длины волны, т.е. в наибольшей степени рассеивается фиолетовый и синий свет. Рассеяние создает дополнительную яркость, искажая таким образом действительное соотношение отражательных свойств объектов по спектру.

Скопления более крупных молекул и частицы аэрозоля создают ахроматичный рассеянный свет. Дымкой принято называть свечение слоя атмосферы, находящегося между объектом и наблюдателем (съемочной системой), вызванное рассеянием света на флуктуационных неоднородностях газов и на твердых частицах. Она ослабляет световой поток, регистрируемый приемником излучения, но одновременно создает дополнительное свечение, что приводит к понижению контраста на снимках, полученных в видимой области спектра. Дымка может создаваться твердыми частицами как естественного происхождения, например, пыли или соли, так и привнесенными в атмосферу в результате хозяйственной деятельности человека.

Интенсивность дымки зависит от угла между падающим солнечным лучом и направлением визирования. На снимках, полученных при низком Солнце и широкоугольными съемочными камерами, влияние дымки может быть очень существенным. Оно выражается в снижении контраста на краях снимка, особенно в его посолнечной (находящейся дальше от Солнца) части.

Освещенность земной поверхности, т.е. количество световой энергии, приходящейся на единицу площади, преимущественно складывается из прямой и рассеянной солнечной радиации, соотношение между которыми меняется в зависимости от высоты Солнца, крутизны и ориентировки склонов.

При высоком Солнце преобладает прямая радиация, что приводит к резким различиям в освещенности склонов разной экспозиции: одни склоны оказываются освещенными, другие — в тени или полутени. В ясный, безоблачный день в околополуденные часы освещенность склонов может различаться в четыре—шесть раз. Тени в это время занимают наименьшую площадь, но зато плотность их очень велика, поэтому объекты в тенях распознаются очень неуверенно или не распознаются вовсе. При низком Солнце возрастает доля рассеянной радиации, тени становятся более прозрачными, хотя и значительно большими по площади. Разница в освещенности склонов разной экспозиции уменьшается.

Повысить надежность дешифрирования территорий с разными природными условиями можно, используя снимки, полученные при разной высоте Солнца. Так, залесенные территории лучше дешифрируются при минимальных размерах теней, т.е. при высоком Солнце (более 40°), так как в противном случае падающие тени деревьев верхнего яруса закрывают кроны более низких ярусов. Наоборот, микрорельеф в степных и пустынных районах более уверенно распознается при низком Солнце за счет большей площади теней. При дешифрировании горных территорий наибольший эффект дает использование снимков, полученных при средней высоте Солнца, когда тени не слишком велики и более прозрачны, чем в полдень.

Приход солнечной радиации на поверхность Земли зависит от ориентировки и крутизны склонов. Не только прямое, но и рассеянное освещение всегда больше на склонах южной экспозиции. В январе крутые южные склоны могут иметь продолжительность возможного облучения в 13-14 раз больше, чем северные. Горизонтальные и наклонные участки по-разному освещаются Солнцем: в утренние часы наклонные (к Солнцу) поверхности освещены сильнее, чем горизонтальные, а в полдень, наоборот, больше радиации поступает на горизонтальные участки. Это приводит к тому, что одинаковые или близкие по характеру объекты на разных склонах изображаются на снимках неодинаково, что важно иметь в виду при дешифрировании.

Метеорологическим элементом, существенно влияющим на освещенность, является облачность. С одной стороны, облака являются помехой при съемке, так как их наличие приводит к тому, что практически выпадают из обработки площади, закрытые тенями от них, а при съемке из космоса и их изображениями. С другой стороны, облачность изменяет освещенность снимаемой территории. Кучевая облачность снижает освещенность в два—четыре раза, облака среднего яруса — на %. Облачность верхнего яруса, наоборот, увеличивает общую освещенность за счет увеличения доли рассеянной радиации. Съемка под тонкой пленкой облачности верхнего яруса дает снимки, исключительно подходящие для дешифрирования горных районов, так как на них практически отсутствуют тени. Однако такая ситуация встречается крайне редко.


  1. Методы дистанционного зондирования

Основным направлением развития аэрокосмических средств наблюдения природной среды является использование регистраций отражения света и собственного излучения Земли в разных спектральных интервалах

  • визуальное наблюдение(0,40 – 0,64 мкм);

  • фотографирование (0,40 – 0,92 мкм)

  • спектрофотометрирование (0,40 – 0,92 мкм)

  • телевизионная съемка (0,45 – 0,75 мкм)

  • тепловая инфракрасная съемка (2,6 – 5,5 и 8,0 – 14,0 мкм)

  • мноспектральная (0,32 – 12,5 мкм)

  • микроволновая (0,3 см и более)

  • активные методы локации


Визуальное наблюдение - визуальное дешифрирование не теряет своего значения, несмотря на развитие методов автоматизированной обработки снимков, но для достижения хороших результатов требуют высокой профессиональной подготовки и хорошего знания объектов дешифрирования. Процесс визуального анализа изображения принято делить на три стадии: обнаружение, опознавание, интерпретация. Последняя из них предполагает выявление существа объекта, отнесение его к какой-либо категории, предусмотренной легендой или ранее известной дешифровщику, т.е. связана с логическим восприятием. Две первые представляют особенности зрительного восприятия.
Фотографирование

По-прежнему дает наиболее детальную информацию о пространственной структуре земной поверхности. Техника аэрофотосъемки (АФС) не претерпевает существенных изменений и наиб. интерес в посл. годы имело космическое фотографирование. ФС с пилотируемых орбитальных станций (ПОС) производятся ручными или стационарными картографическими камерами. Снимки с ПОС достигли разрешения 10-40 м. Однако такое высокое пространственное разрешение КС не является их бесспорным достижением. Во-первых, главное преим. КС перед обыч. АС в их обзорности и генерализации, а не в детализации изображения однородных образований. Во-вторых, задачи детального исследования природы решаются обычной АФС в широком диапазоне масштабов 1:1000 до 1 : 150000. В-третьих, согласно существующим международным нормам, считается допустимой глобальная космическая съемка состояния природной среды с разрешением 16-30 м, что соотв. масштабу фотографирования 1 : 4000000 - 1 : 8 000 000 при разрешающей способности 0,035 мм.



Преим. КС:

  • экстремально мелкие масштабы (мельче 1: 10 000 000)

  • высокие обзорности КС (более 1 млн. км)

  • высокие уровни оптической генерализации (с пространственным разрешением 0,6 – 1,0 км и крупнее)

Все это обеспечивается обычными телевизионными средствами съемки метеорологических ИСЗ.
Аэрофотосъмка (АФС) обслуживает картографирование в крупных и средних, так наз. «съемочных» масштабах 1: 10 000 – 1: 300 000.
Космические фотографии – черно-белые на панхроматической пленке, цветные в естественных и спектрозональные в условных цветах – являются основой средне- и мелкомасштабного тематического картографирования. они используются г.о. для контурного дешифрирования, выделения природных образований, прослеживания их границ, изучения внутренней структуры и картографирования природных и трансформированных объектов в масштабах 1: 300 000 – 1: 3 000 000. По косм. фото показывается также детал. морфоструктура антропогенных воздействий с отражением соотношений разных генетических типов антроп. трансформаций. Однако, несмотря на хорошее пространственное разрешение и успешное контурное дешифрирование, вероятности распознавания состава объектов по космическим фотографиям сильно колеблются г.о. в пределах 0,6- 0,9, что не может полн. удовл. требования практического использования. В течение посл. лет успешное космическое фотографирование проводилось с ПОС «Салют» и «Skylab».
Многозональное фотографирование – синхронное фотографирование одного и того же участка многообъективной фотокамерой с разными комбинациями фотопленок и светофильтров. Проводилось с самолетов, начиная с 1964 г.
Спектрофотометрирование – измерение спектральной отражательной способности. Первое успешное спектрофотометрирование было проведено летчиком-космонавтом В.И. Севостьяновым с ПКК «Союз-9» в 1970. Это позволило впервые классифицировать основные типы природных образований по спектрам, измеренным за пределами земной атмосферы. Космическое спектрофотометрирование учитывает оптическую неоднородность участка.
Телевизионная съемка – проводилась с метеорологических ИСЗ в спектральном интервале 0,5- 0,75 мкм с разрешением 1-3 км. После 1974 была использована усовершенствованная камера с разрешением 0,3-0,6 км, что позволило стандартизировать измерения и получать количественные данные об оптических характеристиках земной поверхности. ТС наиболее перспективны для наблюдения быстро меняющихся природных явлений, кроме того используются для мелкомасштабного физико-географического районирования.
Инфракрасная съемка – проводилась с самолетов и спутников в первом 3,4 - 5,6 мкм и во втором 8,0 - 12,5 мкм окне прозрачности атмосферы. ИК съемка дает пространственно-временное распределение радиационных температур системы Земля – атмосфера.
Мноспектральная съемка – т.е. съемка во многих узких спектральных интервалах с помощью ФЭУ, светофильтров и сканеров, как с самолетов, так и с КЛА имеют большой интерес в течение посл. лет. Проводились с метеорологических ИСЗ с высоты около 900 км, а также с ПОС( пилотируемая орбитальная станция). Наиболее перспективны для изучения с/х угодий и посевов.
Микроволновая съемка – регистрация пассивного радиотеплового излучения в диапазоне 0,3 – 30 см, проводилась в экспериментальном порядке с ИЗС «Метеор» и Nimbus на длине волны0,8 см с полем зрения 30 км. Кроме ИСЗ микроволновую съемку Земли проводили космонавты с ПОС «Skylab» в диапазоне около 2,1 см. Основное преимущество состоит в том, что во всех диапазонах (кроме 3,5 см) коэффициент пропускания атмосферы составляет 0,7 – 1,0

Активные локации – активные съемки (радарные, лидарные, лазерные и т.п.) проводились исключительно с самолетов, т. к. еще труднодоступны для космической съемки ввиду больших энергетических затрат. Но обладают высоким пространственным разрешением, независимы от состояния атмосферы, спектральной избирательности, глубины взаимодействия с экраном и т. д.

Тема 3. Аэрофотосъемка
План лекции:

  1. История развития аэрофотосъемки

  2. Технические показатели аэрофотосъемки

  3. Оценка качества АФС

  4. Условия проведения АФС городских территорий




  1. История развития аэрофотосъемки

Начальный период. Начало наблюдений и фотографирования с воздуха относится к середине позапрошлого века. Французский военный офицер Гаспар Турнашон (Надар) в 1859 г. сфотографировал деревню неподалеку от Парижа с воздушного шара. В России первые фотоснимки, также с воздушного шара, выполнены в 1886 г. начальником воздухоплавательной команды военного ведомства поручиком А. М. Кованько. Спустя почти два месяца член Русского технического общества Л. Н. Зверинцев произвел фотографирование Петербурга и острова Котлин. Шар унесло в открытое море.

Первая мировая война послужила толчком к быстрому развитию съемок с самолетов и переходу от отдельных фотографий с воздуха к практическому использованию аэроснимков. В 1916 г. в русской армии при разведывательных отделениях штабов были сформированы специальные фотометрические (впоследствии фотограмметрические) части. В их задачу входило дешифрирование аэроснимков, перенос результатов на карту и размножение дополненных таким образом карт. Следующий шаг в использовании снимков связан с созданием подполковником М. В. Потте первого автоматического аэрофотоаппарата, съемка которым выполнялась не на светочувствительные стеклянные пластины, а на фотопленку.



1920-е годы. После окончания войны в Великобритании, Франции, США, а несколько позже и в Германии опыт, накопленный военными, стал распространяться и на области хозяйственной деятельности. В нашей стране началом применения аэросъемки для нужд народного хозяйства можно считать 1918 г., когда было выполнено фотографирование местности в районе г. Твери на площади 100 км2. В марте 1919 г. Принят декрет об учреждении Высшего геодезического управления. Было создано Аэрофототопографическое отделение, которое выполняло опытно-производственные работы по использованию аэрофотоснимков в картографических целях. В 1924 г. ставится задача использовать аэрофотоснимки при создании топографических карт неисследованных районов, тогда же проведены первые аэрофотосъемки для нужд лесоустройства и дорожного строительства.

1930-е годы. В этот период аэрофотоснимки стали применяться в геологии, для изучения, таксации и эксплуатации лесов, а также при изучении Арктики. К этому же времени относится первый опыт использования аэрофотоснимков для изучения пустынь, рек, болот, рельефа. Аэросъемка становится новым орудием для работы в труднодоступных районах.

1940-е годы. Вторая мировая война дала новый импульс развитию методов получения и интерпретации снимков с воздуха. Появляется спектрозональная пленка (в американской литературе принят термин «цветная инфракрасная»), использование которой позволяло отделить вегетирующую растительность от окрашенной в зеленый цвет военной техники. В это время проводятся первые опыты применения радиолокаторов для исследования местности с воздуха.

В Советском Союзе даже во время Великой Отечественной войны 1941-1945 гг. активно велись начатые ранее работы по топографическому картографированию. В 1949 г. было закончено составление топографической карты масштаба 1:100 000. Это стало возможно благодаря применению аэрометодов, в частности камерального дешифрирования аэрофотоснимков при составлении листов карты на малоисследованные восточные районы страны.

С этого времени дешифрирование снимков становится обязательным процессом в технологической схеме топографического картографирования.

1950-е годы. В этот период разработанные в военных целях методики съемки и дешифрирования становятся достоянием широкого круга исследователей и производственников. Расширяется круг отраслей науки и практики, в которых применяются аэрофотоснимки, совершенствуется методика их дешифрирования.

1960-е годы. В это время разрабатываются основы дешифрирования снимков как метода географического исследования. Ландшафтный метод, становится основным при географическом изучении территории по аэроснимкам. Наиболее широкое развитие он получил при гидрогеологических изысканиях, при почвенном и геоботаническом картографировании.

Важнейшее событие этого периода, знаменующее новый этап в развитии аэрокосмических методов, — получение первых фотографических и телевизионных снимков из космоса. Оно послужило толчком к разработке новых типов съемочных систем. В США и почти одновременно в Советском Союзе разрабатывается новый принцип регистрации солнечного излучения и создаются новые съемочные оптико-электронные системы — сканеры. Внедрение регистрации излучения на магнитную пленку, облегчающее кодирование информации, послужило стимулом для разработки методов автоматизированного дешифрирования снимков. В эти же годы начинается создание способов синхронной съемки в нескольких спектральных зонах оптического диапазона — многозональной съемки.



1970-е годы характеризуются вхождением в жизнь и все более широким применением космических методов.

В 1971 г. в нашей стране были получены из космоса фотографические снимки масштаба около 1:2 000 000, долгое время не имевшие аналогов по детальности изображения. Съемку осуществил экипаж орбитальной станции Салют, трагически погибший при возвращении на Землю. В 1972 г. США вывели на орбиту автоматический спутник Ландсат, на котором был установлен сканер, обеспечивавший получение многозональных снимков в четырех зонах видимого и ближнего инфракрасного участков спектра с размером элемента изображения 57x79 м на местности и предназначавшийся для изучения природных ресурсов.

С этого момента развитие космических съемок в оптическом диапазоне идет в двух направлениях: наша страна имеет приоритет в развитии фотографических систем, а США и впоследствии европейские и некоторые азиатские страны — оптико-электронных. В 1970-х широкое применение космических снимков ознаменовало новый этап в развитии тематического, в том числе комплексного картографирования. Можно считать, что именно к этому времени относится формирование принципа многовариантности, (множественности) в получении и использовании снимков: съемка с разной высоты, разные носители, масштабы, участки спектра, в которых регистрируется излучение, разнообразные методы обработки получаемой информации.

1980-е годы — период совершенствования способов получения и широкого применения аэрокосмической информации во всех областях изучения и картографирования поверхности Земли. В связи с все более широким внедрением в практику персональных компьютеров и геоинформационных технологий происходит развитие методов компьютерной обработки снимков.

Конец XX — начало XXI в. ознаменовались скачком в развитии способов получения космической информации. Достижения в области волоконной оптики сделали возможным существенное улучшение пространственного и спектрального разрешения оптикоэлектронных съемочных систем. Сканеры с нескольких спутников разных стран получают космическую информацию с размером пикселя от первых метров до 15 м и не в 3—4 каналах, как это было принято раньше, а в 7-15. Появились спектрометры, выполняющие гиперспектральную съемку в 32—200 каналах.

Характерная черта этого периода — появление в широком пользовании материалов космической съемки, выполнявшейся в предыдущие десятилетия военными организациями России США, так называемых конверсионных снимков с размером пикселя 1-2 м.

Доступность для исследователей космической информации высокого разрешения привела к тому, что использование аэрофотоснимков для тематического картографирования стало малоэффективным. Для последних лет характерно все более широкое внедрение компьютерного дешифрирования снимков, которое в большой мере обусловлено распространением и доступностью снимков, полученных электронно-оптическими системами и распространяемых в цифровом виде.
2. Технические показатели аэрофотосъемки

При создании топографической основы фотограмметрическим методом используют снимки, полученные отечественными аэро­фотоаппаратами типа АФА-ТЭ, АФА-ТЭС, а из зарубежных — LMK, RC-30 (Leica). В качестве основных носителей съемочной аппаратуры применяют самолеты: Ан-2, Ан-30, Ту-134СХ, Ил-20М.

В некоторых случаях съемку проводят с вертолетов, мотодель­тапланов, управляемых по радио авиамоделей и воздушных ша­ров. Съемку выполняют в ясную солнечную погоду, при отсут­ствии облаков. Комплекс аэрофотосъемочных работ состоит из нескольких этапов:


  • разработки технического задания (проекта), включающего тех­нические параметры съемки: границы участка съемки, высоту и масштаб фотографирования, фокусное расстояние АФА, продоль­ное и поперечное перекрытие снимков, тип аэрофотопленки, сро­ки съемки и т. д. При использовании современных технических средств производства аэрофотосъемки, таких, как навигационная система GPS и компьютерная система управления полетом и ра­ботой аэрофотоаппарата типа ASCOD, разработка задания имеет свои особенности. Получают координаты проектируемых центров фотографирования, т. е. точек, в которых происходит открытие затвора АФА (экспонирование). Для этого на топографическую карту масштаба 1:100 000 наносят заданную границу участка (объекта) аэрофотосъемки. Затем с помощью дигитайзера опреде­ляют координаты поворотных точек границы участка съемки, ко­торые вводят в бортовой компьютер. В компьютер также вводят масштаб аэрофотосъемки, величину продольного и поперечного перекрытия, фокусное расстояние и формат снимков. По этим данным вычисляют координаты проектируемых центров фотогра­фирования в системе координат WGS-84;

  • подготовки аэрофотосъемочного оборудования, полетного за­дания и т.п.

  • аэрофотографирования;

  • фотолабораторной обработки аэрофильмов (проявление, фик­сирование, сушка, нумерация негативов, контактная печать аэро­снимков);

  • составления накидного монтажа и изготовления его репродук­ции, оценки фотографического и фотограмметрического качества материалов аэрофотосъемки;

  • сдачи материалов аэрофотосъемки заказчику.

При аэрофотографировании масштаб получаемых снимков, по экономическим соображениям, мельче масштаба создаваемого плана. По масштабу фотографирования съемку разделяют на: крупномасштабную (1: М > 1:15 000), среднемасштабную (1:16 000 < 1 :М< 1:50 000), мелкомасштабную (1:М < 1:51 000) и сверхмелкомасштабную (1:М < 1:200 000).

Фотосъемку в зависимости от угла отклонения оптической оси объектива АФА от вертикали, как было рассмотрено ранее, делят на плановую и перспективную.



Плановой называют аэрофотосъемку, выполняемую при верти­кальном положении оптической оси, при этом угол отклонения допускается до 3°.

Использование гиростабилизирующих аэрофотоустановок при фотографировании местности позволяет получить снимки с углом наклона 7... 10 мин (предельное значение утла 40 мин). При созда­нии планов и карт крупного масштаба применяют снимки, полу­ченные в результате проведения плановой аэрофотосъемки.

При перспективной съемке угол отклонения оптической оси от вертикали может достигать 45°. Ее выполняют для увеличения зоны захвата снимаемой местности при обзорных или рекогнос­цировочных работах.

При планово-перспективной съемке используют несколько аэрофотоаппаратов одновременно — одним АФА проводят плано­вую съемку, другими перспективную. Это позволяет фотографи­ровать полосу местности до горизонта.

По количеству и расположению снимков различают однокадровую (одинарную), маршрутную и многомаршрутную (площад­ную) аэрофотосъемку.

Рис. .1. Схема аэрофотосъемки:

/ — двойное продольное перекрытие снимков; 2 — тройное продольное перекрытие снимков;



3 — поперечное перекрытие снимков— положение центров фотографирования;

01,..., 04 — их проекции на местности


При однокадровой фотосъемке получают одиночные снимки участков земной поверхности.

При маршрутной фотосъемке изображение полосы местности представляется в виде некоторого количества снимков, получен­ных по направлению (маршруту) полета летательного аппарата. Маршрут полета может быть прямолинейным, криволинейным или ломаным. Это зависит от вида фотографируемого объекта и целей съемки. Например, при обследовании или проектировании линейных объектов (дорог, трубопроводов, линий электропереда­чи, каналов и т. п.) съемку проводят по криволинейным или лома­ным маршрутам.



Многомаршрутная (площадная) фотосъемка представляет собой получение снимков местности с нескольких параллельных марш­рутов (рис.1). Маршруты прокладываются чаще всего по на­правлениям восток—запад—восток или север—юг—север. Пло­щадную аэрофотосъемку применяют при картографировании или обследовании больших территорий.

Одномаршрутную и многомаршрутную аэрофотосъемку, про­водимую с помощью кадровых АФА, выполняют с перекрытиями соседних снимков.

Перекрытиями называют части аэроснимков, на которых изображена одна и та же местность. Значения пере­крытий выражают в процентах от длины стороны снимков.

Взаимное перекрытие снимков одного маршрута — это продоль­ное перекрытие, рассчитываемое по формуле



,

где — размер перекрывающихся частей снимка; — длина стороны снимка по направлению маршрута.

Продольное перекрытие снимков рассчитывают или задают, исходя из технологии фотограмметрической обработки снимков (или иных соображений). Величина его может быть 60, 70, 80, 90 %. Перекрытие двух смежных снимков называют двойным (на рис. 1 обозначено цифрой 1). Зона перекрытия трех снимков — тройное перекрытие (на рис. 1 обозначено цифрой 2) и т. д. Для каждого стандартного значения продольного перекрытия опреде­ляют минимальные и максимальные пределы.

Продольное перекрытие обеспечивается частотой (временным интервалом) включения АФА, которое зависит от высоты фото­графирования и путевой скорости летательного аппарата. Расстоя­ние между соседними точками фотографирования в маршруте на­зывают базисом фотографирования и обозначают Вх.



Поперечное перекрытие ру — это перекрытие снимков соседних маршрутов. Поперечное перекрытие рассчитывают по формуле



где — размер перекрывающейся части снимков двух смежных маршрутов.

Минимальное поперечное перекрытие допускается 20 %. Рас­стояние между маршрутами (1) рассчитывают по формуле



,

где - длина поперечной стороны снимка; т — знаменатель масштаба аэрофо­тосъемки; ру - заданное поперечное перекрытие.

Продольные и поперечные перекрытия позволяют определить центральную часть снимка, где его геометрические и фотометрические искажения минимальны. Эту часть снимка называют рабо­чей площадью снимка. Рабочую площадь снимка, ограниченную линиями, проходящими через се­редины двойных продольных и поперечных перекрытий, называ­ют теоретической (рис. 2).

Размеры ее сторон bх и bу по со­ответственным осям х и у рассчи­тывают по формулам:



,

,


Рис. 2. Рабочая площадь снимка
Теоретическую рабочую пло­щадь используют при расчетах, а практическую — при выполне­нии фотограмметрических работ.
3. Оценка качества результатов аэрофотосъемки

Аэрофотосъемочные работы выполняют как государственные предприятия (аэрофотосъемочные отряды), так и различные фирмы, имеющие лицензии на производство аэрофотосъемки. Заказчиком мо­жет быть любая организация, у которой есть разрешительные до­кументы на работу с материалами аэрофотосъемки.

Порядок заказа аэрофотосъемки состоит из следующих основ­ных этапов:


  • организация-заказчик направляет письменное предложение фирме-исполнителю, в котором указывает местоположение учас­тка снимаемой местности (на мелкомасштабной карте наносят границы объекта съемки, его площадь, сроки съемки, тип АФА и т. п.);

  • заказчик составляет и согласует с исполнителем техническое задание на выполнение аэрофотосъемки, если фирма-исполни­тель имеет возможности выполнить этот вид работ. В задании от­мечают технические параметры съемки: назначение съемки, высо­та фотографирования, фокусное расстояние АФА, съемочный масштаб, тип аэрофотоаппарата, тип аэрофотопленки и свето­фильтра, использование специальной аппаратуры, сопровождаю­щей аэрофотосъемку (радиовысотомеров, приборов GPS или иных), тип летательного аппарата. Указывают условия проведения аэрофотосъемки: примерные сроки, высоту солнца. Подтвержда­ют площади и местоположение участка;

  • в соответствии с техническим заданием исполнитель определя­ет стоимость комплекса аэрофотосъемочных работ, которую со­гласуют с заказчиком;

  • между заказчиком и исполнителем заключается договор на вы­полнение аэрофотосъемки.

После выполнения аэросъемочных работ оценивают качество материалов аэрофотосъемки.

Оценку качества материалов съемки выполняют с целью выяв­ления соответствия реально получаемых результатов требованиям технического задания и существующим нормативам, значения ко­торых определены инструкциями и наставлениями по производ­ству аэрофотосъемок. Оценивают фотографическое качество аэро­фотоснимков и фотограмметрическое качество материалов аэро­фотосъемки.

Фотографическое качество зависит от состояния атмосферы, освещения объекта съемки, технических условий проведения аэрофотографирования, фотохимической обработки. При визу­альной оценке на аэрофотонегативах не должно быть обнаружено механических повреждений, изображений облаков, теней от них, бликов, ореолов. Изображение на снимках должно быть резким, с хорошей проработкой деталей в светлых и темных участках. Опти­ческая плотность (тон) и контрастность должны соответствовать нормативам. При визуальном способе для сравнения можно ис­пользовать снимки-эталоны, т. е. снимки, фотографическое каче­ство которых оценено высококвалифицированными специалиста­ми-экспертами. Применение приборов позволяет более точно и объективно оценить фотографическое качество аэрофотоизобра­жений.

Фотограмметрическое качество материалов аэрофотосъемки оценивают по следующим критериям.

1. Определение продольных и поперечных перекрытий. Вели­чину перекрытий определяют с помощью специальной линейки, позволяющей измерять перекрытия в процентах. Если аэрофо­тосъемка выполнена с продольным перекрытием 60 или 80%, то минимальное значение перекрытия допускается соответственно 56 и 78 %. Минимальное поперечное перекрытие допускается 20 %. Обычно определение перекрытий выполняют по накидному монтажу.



Накидным монтажом называют временное соединение контакт­ных снимков, осуществляемое совмещением (наложением) их пе­рекрывающихся частей. В результате получают непрерывное фо­тографическое изображение снятой территории.

Снимки укладывают и закрепляют на специальных деревянных щитах, иногда покрытых пробковым слоем. При 80 % перекрытия снимки укладывают через один, при 90 % — через два. Независимо от величины продольного перекрытия обязательно используют крайние снимки маршрутов. Укладывают снимки так, чтобы но­мера снимков были видны на накидном монтаже. Снимки разме­щают на щите так, чтобы их номера располагались горизонтально. Номер может быть в правом верхнем углу или на южной (нижней) стороне снимка.

Первый закрепленный снимок укладывают на второй из дан­ного маршрута так, чтобы максимально точно совместить изобра­жения их перекрывающихся частей. Совмещают изображения способом «мельканий». Суть этого способа заключается в том, что на предыдущий снимок укладывают последующий так, чтобы изображения их перекрывающихся частей примерно совпали. За­тем верхний снимок многократно в быстром темпе отгибают и прижимают к нижнему. При неточном совмещении снимков на­блюдаемые изображения объекта будут перемещаться. Возникает эффект мультипликации. Для устранения перемещения положе­ние верхнего снимка уточняют, сдвигая в нужном направлении. После закрепления второго снимка аналогично укладывают осталь­ные снимки маршрута. Снимки второго и последующих маршру­тов укладывают также способом «мельканий», добиваясь совмеще­ния изображений как в зонах продольных, так и поперечных пере­крытий. При 30%-м поперечном перекрытии монтируют все марш­руты, при 60%-м — через маршрут. При значительной территории съемочного участка составляют несколько накидных монтажей, каждый из которых, как правило, покрывает четыре смежных тра­пеции.


  1. Непрямолинейность аэрофотосъемочного маршрута начина­ют с определения главных точек крайних снимков маршрута. За главные точки принимают пересечение линий, соединяющих про­тивоположные координатные метки. Затем соединяют прямой ли­нией и измеряют расстояние L между ними (рис. 3).


После этого измеряют уклонение от этой прямой главной точки наиболее удаленного снимка. Это уклонение называют стрелкой прогиба маршрута. Отношение стрелки прогиба к дли­не маршрута, выраженное в процентах, есть непрямолинейность маршрута:



Непрямолинейность маршрута не должна превышать 2 % при высоте фотографирования более 750 м и в масштабе съемки 1: М мельче 1:5000 и не более 3 %, если Н< 750 м и 1:М крупнее 1:5000.

  1. Разворот снимка относительно направления маршрута
    «елочка» можно определять двумя способами: первый — путем
    измерения угла между линией xx, соединяющей координатные
    метки снимка, и базисом фотографирования (рис. 4); вто­рой - измерение угла между осью маршрута и поперечной сто­роной снимка. Допустимые углы «елочки» при фокусных рас­стояниях 100, 140, 200, 350 и 500 мм соответственно равны 5, 7, 10, 12 и 14°.

  2. Углы наклона снимков можно определять по изображению
    круглого уровня в одном из углов снимка. Если на снимках нет
    изображений уровней, то углы наклона определяют фотограмметрическим способом. Как уже отмечалось, при плановой съемке
    углы наклона не должны превышать 3°.

После завершения работ по оценке качества материалов аэро­фотосъемки выдают заключение о ее соответствии требованиям инструкции и техническому заданию. В случае несоответствия требованиям выполняют повторную (сплошную или выборочную) аэрофотосъемку.

5. Фактическую высоту фотографирования Н над средней плоскостью съемочного участка определяют по измеренным базисам


на накидном монтаже и топографической карте по формуле

,

где - базис на карте; М - знаменатель масштаба карты; - базис на накид­ном монтаже.

При аэрофотосъемке равнинной местности базисы выбирают по диагоналям накидного монтажа. Концами базисов служат достоверно опознаваемые точки на накидном монтаже и соответ­ственные им на карте. При съемке местности со значительным ре­льефом базисы выбирают в пределах одного маршрута.

Отклонение фактической высоты от заданной вычисляют в процентах. Допустимое отклонение не должно превышать 3...5 %.

6. Обеспеченность границ участка (объекта) съемки и проверка наличия аэрофотоснимков, покрывающих всю территорию в пре­делах границ участка съемки. Контроль выполняют по накидным монтажам всего участка или отдельных маршрутов. Для этого на аэрофотоснимках опознают поворотные точки границ участка съемки и сравнивают с обозначенными проектными границами на топографической карте. С накидных монтажей участков, где аэрофотосъемка не завершена (имеются пропуски), делают ре­продукции, на которых сверху подписывают — «участок не за­вершен».

После оценки качества материалов аэрофотосъемки изготавли­вают репродукции накидного монтажа. Репродукция накидного монтажа — это его уменьшенная в два-четыре раза копия. Репро­дукцию изготавливают чаще традиционным фотографическим способом. Для этого с помощью специальных репродукционных фотокамер получают негативы репродукций, а затем осуществля­ют фотопечать их позитивного изображения. Перед фотографиро­ванием на накидном монтаже прикрепляют надписи с указанием года выполнения и масштаба аэрофотосъемки, номенклатуры тра­пеции, шифра объекта и масштаба будущей репродукции. В ком­пьютерных технологиях обработки снимков составляют накидной монтаж программными средствами аналогично рассмотренной технологии. Оператор на мониторе анализирует качество выпол­ненной аэрофотосъемки. С помощью принтера или плоттера на печать выводится репродукция (копия) накидного монтажа. С по­мощью репродукции легче пользоваться большим числом аэрофо­тоснимков: выбрать необходимый в данный момент снимок, со­ставить проект геодезической привязки снимков и т. п.

После производства аэрофотосъемки заказчику сдают:



  • аэрофильмы (аэрофотонегативы) в неразрезанном виде, на ка­тушках, упакованные в плотно закрытые металлические банки;

  • контактные отпечатки с аэронегативов;

  • негативы репродукций накидных монтажей;

  • репродукции накидных монтажей;

  • топографические карты с проектными и фактическими осями маршрутов аэрофотосъемки;

  • журналы регистрации аэронегативов и негативов репродукций накидных монтажей;

  • данные показаний радиовысотомера или приборов GPS; контрольные негативы прикладной рамки аэрофотоаппарата;

  • характеристики АФА: фокусное расстояние, значение дисторсии по осям и зонам, координаты главной точки, расстояние меж­ду координатными метками;

  • паспорт аэрофотосъемки и другие материалы и сведения, пре­дусмотренные договором.


4. Особые условия проведения аэрофотосъемки городских территорий

Аэрофотосъемку городов и крупных поселений городского типа выполняют с учетом некоторых особенностей организации полетов и технических требований к получаемым изображениям фотографируемых территорий.

Важный этап подготовки проведения летно-съемочных ра­бот — согласование режима полетов над территорией города. При этом утверждают сроки, время суток и минимально допус­тимую высоту аэрофотографирования, воздушные коридоры подлета к участку съемки, типы аэросъемочных летательных ап­паратов.

Технические параметры и условия проведения аэрофотосъемки определяются спецификой городского ландшафта. Это прежде всего значительная плотность высотных объектов (зданий и со­оружений), которые при съемке кадровыми АФА закрывают опре­деленные участки местности, так называемые «мертвые зоны». Помимо «мертвых зон» высотные объекты создают тени, длина которых пропорциональна их высотам и обратно пропорциональ­на высоте солнца. Участки местности, находящиеся в «мертвых зонах» и закрытые тенью, в большинстве случаев становятся недо­ступными для изучения по аэрофотоснимкам. Кроме того, на снимках недостаточно полно отображаются линии электропереда­чи, связи, колодцы теплосетей, водопроводов и других коммуни­каций.

Особенности городского ландшафта предъявляют специальные требования к проведению аэрофотосъемки:

для уменьшения «мертвых зон» аэрофотосъемку проводят с продольным перекрытием снимков и поперечным пере­крытием и более;

если аэрофотоснимки в дальнейшем будут использовать для получения только плановых координат (X, У) точек местности (например, при инвентаризации земель), то применяют аэрофото­аппараты с длиннофокусным объективом высокой разрешающей способности;

для улучшения изобразительных свойств аэроснимков приме­няют аэрофотопленки с высокой разрешающей способностью и большой фотографической широтой; фотохимическую обработку экспонированной аэрофотопленки проводят в мелкозернистом проявителе. Для проработки изобра­жений деталей объекта в тенях коэффициент контрастности про­явленного изображения должен быть равен 1,0 ± 0,2;

для уменьшения влияния теней от высотных объектов съемку проводят при максимально возможных высотах солнца. Если позволяют погодные условия, выполняют так называемую съем­ку «под зонтиком» — летательный аппарат находится ниже сплошной высокой облачности. При этом объект съемки освеща­ется только рассеянной радиацией и поэтому теней практически не образуется.


следующая страница>


Тема Вводная лекция

Основная задача фотограмметрии — топографическое кар­тографирование, а также создание специальных инженерных пла­нов и карт, например кадастровых

927.23kb.

14 12 2014
4 стр.


Пропедевтика (основы композиции в дизайне одежды) Краткий конспект лекций

Тема Вводная лекция. Понятие композиции. Цели и задачи курса. Место курса основ композиции в специальных

283.66kb.

01 10 2014
1 стр.


Учебный план по дисциплине лекция 1 Вводная лекция. Транспортные системы и процессы

Единая транспортная система обеспечивает согласованное развитие и функционирование всех видов транспорта с целью максимального удовлетворения транспортных потребностей при минималь

417.38kb.

06 10 2014
3 стр.


Составьте программу урока, построенного на основе технологии модерации. Урок проводится в классе «Предмет по выбору. Саксофон». Тема : Вводная лекция Знакомство с инструментом «Саксофон» Форма работы (данного урока) мелкогрупповая

Преподаватель Детской Музыкальной Школы по классу «Блокфлейта», «Саксофон», «Ансамбль», «Предмет по выбору. Саксофон». г. Петрозаводск

112.3kb.

08 10 2014
1 стр.


Программа практикума по нанотехнологии (осенний семестр)

Вводная лекция – принципы фотолитографии (прямая и обратная), термическое испарение из трубочек

19.87kb.

14 12 2014
1 стр.


Лекция. Создание системы «метрополия зависимый мир»

Вводная лекция. Создание системы «метрополия зависимый мир». Тропическая и Южная Африка в эпоху колониализма

720.17kb.

14 09 2014
4 стр.


Тематический план курса «Инвестиционное проектирование и бизнес-планирование»

Вводная лекция. Цели и задачи бизнес-планирования. Инновационная деятельность в апк

21.91kb.

27 09 2014
1 стр.


Календарно-тематический план слушание музыки 2 класс I четверть тема урока 1 урок Вводная беседа «Мое музыкальное лето»

Музыкальная тема, способы ее изложения. Музыкальный образ. Определение связи музыкального образа с театрально сценическим. Связь образа с программным замыслом композитора

57.9kb.

17 12 2014
1 стр.