Перейти на главную страницу
Рис. 5.3.
б – падение потенциала в диффузном слое ( - толщина ДЭС)
В ходе различных процессов, например, при броуновском движении коллоидных частиц или при электрокинетических явлениях (см. п. 5.5), противоионы диффузного слоя могут перемещаться вдоль твёрдой поверхности, причём противоионы плотного слоя остаются связанными с ней. Смещение происходит по границе между плотным и диффузным слоями, называемой поверхностью (или плоскостью) скольжения.
Таким образом, сейчас при рассмотрении ДЭС принято различать два электрических потенциала: электротермодинамический , обусловленный количеством адсорбированных на поверхности потенциалопределяющих ионов, и электрокинетический , представляющий собой часть -потенциала, определяемую толщиной диффузного слоя. -потенциал приблизительно равен потенциалу, соответствующему расстоянию между поверхностью скольжения и границей двойного электрического слоя (). В отличие от -потенциала -потенциал в большой мере зависит от самых различных факторов температуры, природы дисперсионной среды, концентрации противоионов, концентрации посторонних индифферентных электролитов и т. д.
5.2. Влияние на двойной электрический слой разбавления
и введения электролитов
При повышении концентрации электролита в системе ионы, имеющие тот же знак заряда, что и противоионы двойного электрического слоя, проникают в него и в первую очередь – в диффузный слой противоионов. Тем самым они «сжимают» ДЭС, так как число ионов в диффузном слое, необходимых для нейтрализации заряда потенциалопределяющих ионов, теперь размещается в меньшем объёме. В пределе такое сжатие может привести к исчезновению диффузного слоя, т. е. к вхождению всех противоионов в плотный слой. В таком случае двойной электрический слой приобретёт строение, близкое к предлагаемому теорией Гельмгольца. Электрокинетический потенциал при этом уменьшается до нуля.
Наоборот, при разбавлении среды растворителем уменьшение концентрации противоионов приводит к их частичной десорбции и переходу из слоя Гельмгольца в слой Гуи. При очень больших разбавлениях это может вызвать исчезновение слоя Гельмгольца и возникновение полностью диффузного двойного слоя. Электрокинетический потенциал при этом увеличивается, но лишь до некоторого предела, после которого он будет уменьшаться. Это связано с тем, что при дальнейшем разбавлении начинается десорбция потенциалопределяющих ионов. Это приводит к снижению как -, так и -потенциала.
На поверхности мельчайших дисперсий адсорбируются присутствующие в дисперсионной среде вещества, в том числе ионизированные стабилизаторы. При этом, как уже говорилось выше, на поверхности дисперсий возникает двойной электрический слой. Рассмотрим в качестве наиболее простого случая частичку дисперсии, имеющую кристаллическое строение (аморфные дисперсии будут отличаться, главным образом, большей нерегулярностью в строении адсорбционного слоя).
Так, например, при химической конденсации в результате взаимодействия растворов серной кислоты и хлорида бария возникают мельчайшие, коллоидных размеров, кристаллики сульфата бария. Один из исходных электролитов серная кислота или хлорид бария всегда будет присутствовать в некотором избытке (это может получиться случайно или может быть сделано произвольно, по выбору экспериментатора). Предположим, что в избытке взят хлорид бария. Тогда в дисперсионной среде, окружающей кристаллики BaSO4 будут иметься ионы Ва2+, Cl и Н+. В соответствии с правилом Панета Фаяиса на поверхности кристалликов ВаSО4, будут адсорбироваться ионы Ва2+, как способные достроить их кристаллическую решетку. Придавая поверхности кристаллика электрический заряд, и будучи достаточно прочно связанными с поверхностью, ионы Ва2+ в данном случае будут выступать в качестве потенциалопределяющих ионов (ПОИ). Для нейтрализации положительного заряда поверхности к ней подойдёт эквивалентное число отрицательно заряженных противоионов, в данном случае ионов Cl. В соответствии с теорией Штерна часть их, довольно близко подошедшая к поверхности и связанная с ней, кроме электростатических, ещё и адсорбционными силами, образует адсорбционный слой.
Рис. 5.4. Схема строения мицеллы золя сульфата бария,
стабилизированного хлоридом бария
Другая часть противоионов, находящихся на большем расстоянии и связанная с поверхностью только электростатическими силами, образует диффузный слой. Противоионы диффузного слоя при броуновском движении коллоидной частицы или в результате собственного теплового движения могут отрываться от неё. Но для соблюдения электронейтральности на место ушедших ионов становятся другие ионы той же природы или, по крайней мере, того же знака. При помещении коллоидного раствора в постоянное электрическое поле противоионы движутся в сторону одного электрода (в рассматриваемом примере – в сторону анода), а твёрдая частица вместе с потенциалопределяющими ионами и противоионами адсорбционного слоя – в сторону другого (в данном примере в сторону катода). Разрыв происходит по границе между адсорбционным и диффузным слоями противоионов, называемой поверхностью скольжения.
Твёрдая основа частицы («агрегат») вместе с двойным электрическим слоем из ионов адсорбированного на её поверхности электролита образует электронейтральную субъединицу дисперсной фазы – мицеллу (не следует путать с мицеллами ПАВ!). Часть мицеллы, находящаяся внутри поверхности скольжения, и движущаяся в электрическом поле, как единое целое, носит название собственно коллоидной частицы или гранулы. Так как в гранулу не входят противоионы диффузного слоя, часть зарядов находящихся в ней остаётся нескомпенсированной. Поэтому гранула несёт на себе электрический заряд, по знаку совпадающий со знаком потенциалопределяющих ионов и численно равный суммарному заряду противоионов диффузного слоя. Внутри гранулы можно выделить ещё одну относительно самостоятельную часть мицеллы – ядро. Ядро образовано агрегатом и потенциалопределяющими ионами и, следовательно, тоже несёт электрический заряд.
5.4. Формула мицеллы
Записывая взаимное расположение составляющих мицеллы, начиная от её центра по направлению к периферии, мы получим формулу мицеллы. В данном примере она носит название «формула мицеллы золя сульфата бария, полученного в избытке хлорида бария» (или «стабилизированного хлоридом бария»):
{ [m BaSO4] n Ba2+ 2(n x) Cl }2х+ 2x Cl
агрегат ПОИ противоионы противоионы
адсорбционного диффузного
слоя слоя
Встречается и другое написание формулы агрегата: m [BaSO4]. Но нам представляется, что в этом случае коэффициент m скорее указывает на множественность агрегатов, чего не может быть в одной мицелле, а не на сложность строения самого агрегата.
В фигурные скобки заключается гранула. Иными словами, фигурные скобки соответствуют поверхности скольжения.
Перед формулой потенциалопределяющего иона ставится коэффициент n. Его буквенное обозначение также говорит о неопределённо большом числе этих ионов. Следует помнить, что m n, причём, как правило, m >> n.
Суммарный заряд противоионов по закону электронейтральности должен быть равен заряду потенциалопределяющих ионов. Поэтому в данном примере в формуле мицеллы должно присутствовать 2n ионов Cl. Число противоионов диффузного слоя в общем случае принято обозначать коэффициентом х. Тогда для числа противоионов в адсорбционном слое следует написать (n – x). В нашем примере записывается соответственно 2х и 2(n – x) из-за того, что ион бария имеет заряд вдвое больший, чем хлорид-ион, и на каждый ион Ba2+ приходится два иона Cl. Над закрывающей фигурной скобкой записывается заряд гранулы, который равен, но противоположен по знаку суммарному заряду противоионов диффузного слоя. В рассматриваемом примере заряд гранулы равен 2х+.
Так как потенциалопределяющие ионы, ядро и гранула рассматриваемого коллоидного раствора заряжены положительно, его можно назвать «положительным золем сульфата бария».
Если же при получении коллоидного раствора в избытке будет серная кислота, двойной электрический слой будет иметь другое строение. Из ионов, имеющихся в растворе, на поверхности агрегатов (мельчайших частиц твёрдого сульфата бария) в соответствии с правилом Панета – Фаянса в первую очередь будут адсорбироваться ионы SO42, которые станут потенциалопределяющими ионами. Ядро мицеллы, таким образом, будет заряжено отрицательно. Для нейтрализации отрицательного заряда ядра из раствора подойдут в эквивалентном количестве противоионы, которыми в данном случае будут являться ионы Н+. Формула мицеллы золя сульфата бария, полученного в избытке серной кислоты, будет выглядеть так:
{ [m BaSO4] n SO42 2(n x) H+ }2х 2x H+
агрегат ПОИ противоионы противоионы
адсорбционного диффузного
слоя слоя
ядро
гранула
мицелла
По заряду потенциалопределяющих ионов, ядра и гранулы этот золь называется отрицательным золем сульфата бария.
В некоторых случаях, отвечающих сжатию ДЭС мицеллы до "гельмгольцевского" слоя, мицелла переходит в изоэлектрическое состояние. Оно соответствует сжатию мицеллы до размеров гранулы, что может быть выражено следующей формулой:
{ [m BaSO4] n Ba2+ 2n Cl }0 (для первоначально положительного золя)
или { [m BaSO4] n SO42 2n H+ }0 (для первоначально отрицательного золя)
В изоэлектрическом состоянии, когда их -потенциал равен нудю, золи обладают наименьшей агрегативной устойчивостью.
На приведённых примерах можно убедиться, что ДЭС мицеллы бывает образован ионами того электролита, который при получении золя присутствовал в реакционной смеси в некотором избытке. Этот электролит называется стабилизатором, т. к. из дальнейшего изложения будет видно, что именно ДЭС является главным фактором, обусловливающим агрегативную устойчивость коллоидных растворов. Поэтому можно предложить ещё одно название рассмотренных золей: «коллоидный раствор (золь) сульфата бария, стабилизированный хлоридом бария» и, соответственно, «коллоидный раствор (золь) сульфата бария, стабилизированный серной кислотой». Из этого также должно стать понятным, что пептизатор, вызывающий переход рыхлого осадка в коллоидный раствор, по сути дела является стабилизатором, восстанавливающим двойной электрический слой частиц, разрушенный при образовании осадка.
Во многих случаях ДЭС на поверхности мицелл может возникать из ионов, образующихся при поверхностных реакциях вещества твёрдой фазы с веществами, присутствующими в дисперсионной среде, как, например, при получении золей методами физической конденсации или диссолюционной пептизации.
5.5. Электрокинетические явления
Существование на поверхности частиц дисперсных систем двойного электрического слоя является причиной особых электрокинетических явлений. Впервые эти явления были обнаружены Ф. Ф. Рейссом в 1807 – 09 гг. Исследуя закономерности электролиза, Рейсс, чтобы предотвратить взаимодействие его продуктов, разделил катодное и анодное пространства в Uобразной трубке диафрагмой из толчёного песка. При пропускании электрического тока через эту систему он обнаружил перенос жидкости из анодного в катодное пространство. Такое явление получило название электроосмоса. Электроосмос приводит к изменению уровней жидкости в сообщающихся сосудах анодной и катодной частях U-образной трубки.
Ещё одно электрокинетическое явление электрофорез, было обнаружено Рейссом в аналогичном эксперименте, с тем, однако, отличием, что здесь роль диафрагмы играл не песок, а высокодисперсная глина. (Сам Рейсс назвал это явление катафорезом). Погрузив во влажный комок глины две заполненные водой стеклянные трубки с электродами. Рейсс обнаружил, что после приложения к электродам разности потенциалов наряду с подъёмом жидкости (у катода) в анодном пространстве появляется взвесь частиц глины. Перемещение высокодисперсных частиц (в данном случае мельчайших частиц глины) глины под действием электрического тока и является электрофорезом.
Электрофорез и электроосмос наблюдаются в дисперсных системах с жидкой полярной, чаще всего водной средой. Их причиной является движение разноимённо заряженных частей двойного электрического слоя относительно друг друга, которое вызывается прохождением через систему электрического тока. Разрыв ДЭС происходит по поверхности скольжения, проходящей между адсорбционным и диффузным слоями противоионов.
Электрофорез наблюдается в ультрамикрогетерогенных (коллоидных) системах. При нём противоионы диффузного слоя движутся в сторону электрода с соответствующим зарядом – катионы в сторону катода, анионы – в сторону анода. Эти ионы в своём движении увлекают за собой какую-то часть дисперсионной среды. Однако при отсутствии мембраны, разделяющей катодное и анодное пространство, это перемещение жидкости незаметно. Гранулы коллоидных мицелл, имеющие заряд, противоположный заряду противоионов, движутся к другому электроду. Движение гранул происходит намного медленнее, чем ионов, что обусловлено несколькими причинами – большими размерами, большим электрическим зарядом и сопротивлением движущейся им навстречу жидкости, увлекаемой противоионами. Огромные по сравнению с ионами объём и масса гранул создают значительное гидродинамическое сопротивление. А большой заряд является причиной того, что при разряде на одном электроде огромного числа противоионов требуется разряд на другом электроде всего одной гранулы.
Электроосмос наблюдается в грубодисперсных системах, частицы которых из-за больших размеров неподвижны или, как в связнодисперсных системах, образуют достаточно прочную единую объёмную структуру. При этом в движении под действием электрического тока участвуют только противоионы диффузного слоя, увлекающие за собой жидкую дисперсионную среду. Так как совокупность неподвижных частиц дисперсной фазы играет роль полупроницаемой мембраны, перемещение жидкой фазы становится заметным.
Электроосмос и электрофорез используются на практике, но их применение, в особенности электроосмоса, ограничено в связи с большим расходом электроэнергии. Так, электроосмос может быть использован для предварительного обезвоживания пористых материалов, например, древесины или пористых сорбентов, для облегчения резания глины в кирпичном производстве и т. п. Электрофорез применяется для нанесения на металлические детали плотных и прочных резиновых и других полимерных покрытий, для очистки каолина в фарфоровом производстве, но особенно велика его роль в биохимии и в медицине. В частности, он применяется для электрофоретического анализа крови с целью диагностики, для разделения белков на фракции, а также в качестве широко известной физиотерапевтической процедуры.
Впоследствии были обнаружены электрокинетические явления, противоположные электроосмосу и электрофорезу, и заключающиеся в появлении электрического поля в результате перемещения относительно друг друга дисперсной фазы и дисперсионной среды. Явление, обратное электроосмосу (эффект Квинке) возникновение электрического тока при протекании жидкости через пористую диафрагму наблюдал в 1859 г. Г. Квинке. Эффект Квинке может быть продемонстрирован на таком несложном опыте. В стеклянную трубку помещается кварцевый песок, полностью перекрывающий её просвет. Вместо песка может быт использована любая пористая диафрагма, например, стеклянная пористая пластинка фильтра Шотта. С двух сторон песка или другой диафрагмы в трубку вводятся электроды, изготовленные, например, из медной сетки или из перфорированных пластинок. Затем через трубку насосом или под действием собственной тяжести прокачивается вода. Гальванометр, присоединённый к электродам, зарегистрирует появление разности потенциалов – т. н. «потенциала протекания».
Обратное электрофорезу явление возникновения электрического тока и разности потенциалов при движении частиц (эффект Дорна) было обнаружено в 1878 г.
Оба эти эффекта обусловлены разрывом двойного электрического слоя по поверхности скольжения при относительном перемещении частиц дисперсной фазы и дисперсионной среды, которая увлекает за собой противоионы диффузного слоя.
При этом используется уравнение Гельмгольца Смолуховского для скорости электроосмоса или электрофореза:
где v линейная скорость электроосмоса (электрофореза), м/с; диэлектрическая проницаемость дисперсионной среды; 0 электрическая постоянная (диэлектрическая проницаемость вакуума, 8,851012 Ф/м); H напряжённость внешнего электрического поля (H = E / l; E напряжение на электродах, В; l расстояние между ними, м); электрокинетический потенциал, В.
Уравнение выводится в предположении, что двойной электрический слой на поверхности коллоидных частиц можно рассматривать как плоский конденсатор и что разность потенциалов между его обкладками соответствует электрокинетическому потенциалу .
В соответствии с теорией плоского конденсатора плотность заряда на его обкладках определяется соотношением
где - расстояние между обкладками, т. е. толщина плотного слоя ДЭС.
Внешнее электрическое поле, параллельное ДЭС, создаёт напряжение сдвига Fe, - пару сил, действующих на единицу площади ДЭС вдоль его поверхности:
Скорость v взаимного смещения фаз под действием этого напряжения сдвига связана с силой вязкого сопротивления среды F уравнением Ньютона
где - вязкость дисперсионной среды; dv/d - градиент скорости смещения дисперсионной среды относительно поверхности твёрдой фазы. Считая величину dv/d постоянной во всём зазоре между обкладками конденсатора (ДЭС), можно принять, что
где v – наблюдаемая скорость взаимного смещения фаз.
При установившемся равномерном движении
и значит
откуда получаем окончательное уравнение Гельмгольца – Смолуховского:
Иногда это уравнение записывают в виде
где v0 = v/H – электрофоретическая подвижность, служащая для сравнения способности к электрофорезу различных коллоидных систем и не зависящая от приложенного напряжения и расстояния между электродами.
Уравнение Гельмгольца – Смолуховского можно преобразовать для вычисления z-потенциала частиц дисперсной фазы при известной скорости электрофореза или электроосмоса:
или
Измеряется скорость перемещения частиц при электрофорезе или жидкой среды при электроосмосе с помощью специальных приборов. Конструкции этих приборов, а также методики измерений приводятся в практикумах или в специальных руководствах.
Экспериментально определённые значения z-потенциала в большинстве золей достигают значений до 100 мВ, что обычно несколько меньше действительного. Это расхождение обусловлено двумя эффектами, которые не были учтены при выводе уравнения Гельмгольца - Смолуховского: релаксационным эффектом (в результате нарушения симметрии диффузного слоя вокруг частицы при движении фаз в противоположные стороны) и электрофоретическим торможением (сопротивление движению частицы обратным потоком противоионов). Эти тормозящие эффекты зависят от размера частиц и толщины двойного электрического слоя. Э Хюккелем на основе теории растворов сильных электролитов было показано, что в уравнение Гельмгольца – Смолуховского следует ввести в качестве поправки множитель 2/3. Однако эта поправка необходима только тогда, когда толщина диффузного слоя значительно превышает размер гранулы, что имеет место в очень разбавленных золях.
ГЛАВА 6
УСТОЙЧИВОСТЬ И КОАГУЛЯЦИЯ ДИСПЕРСНЫХ СИСТЕМ
Устойчивость дисперсной системы характеризуется неизменностью во времени её основных параметров степени дисперсности и равномерного распределения частиц дисперсной фазы в среде.
Проблема устойчивости одна из самых важных и сложных в коллоидной химии. Она имеет большое значение во многих процессах, как протекающих в природе, так и используемых в народном хозяйстве, в том числе в фармации, в особенности в технологии лекарств. Так, обеспечение устойчивости свободнодисперсных систем необходимо при получении из них лекарственных эмульсий, суспензий, пен, аэрозольных препаратов и др. С другой стороны, во многих случаях требуется нарушить устойчивость образовавшихся коллоидных растворов, тонких взвесей или эмульсий для того, чтобы вызвать структурообразование в материалах, чтобы при гравиметрическом анализе получить осадки, не пептизирующиеся при отмывании, чтобы более эффективно проводить очистку сточных вод и т. д.
В данном разделе мы главное внимание уделим явлениям, связанным с агрегативной устойчивостью.
Такими процессами являются изотермическая перегонка вещества от малых частиц к более крупным, коалесценция и агрегация частиц при их столкновениях. На практике наиболее часто приходится встречаться с процессами коалесценции (слиянием капель в эмульсиях, туманах или пузырьков в пенах) и агрегации (объединении твёрдых частиц коллоидных растворов в более или менее прочные агрегаты, которые в принципе могут быть разделены на первоначальные частицы пептизации). Агрегация может происходить в виде коагуляции или в виде флокуляции. Иногда понятия флокуляции и коагуляции из-за схожести механизма и внешних проявлений отождествляются, но всё-таки различия между ними имеются. Флокуляция происходит, как правило, с участием посторонних веществ – флокулянтов, в качестве которых могут выступать различные полимерные природные и синтетические вещества – крахмал, пектины, полиакриламид и др., а также кремниевая кислота. Она заключается в образовании рыхлых хлопьевидных агрегатов и может происходить не только в коллоидных растворах, но и в суспензиях и эмульсиях. Коагуляция (от coagulation – створаживание) – это слипание частиц дисперсной фазы, происходящее при их столкновениях в результате броуновского движения, перемешивания и т. п. Коагуляция может происходить и под влиянием только физических факторов, без введения в систему посторонних веществ.
Следует отметить, что все три упомянутые процесса укрупнения частиц приводят рано или поздно к потере системой седиментационной устойчивости, то есть к выпадению возникающих крупных частиц или хлопьев (флокул) в осадок. С другой стороны, седиментация частиц в грубодисперсных системах приводит к тому, что в образующемся осадке они тесно соприкасаются друг с другом и при определённых условиях могут потерять агрегативную устойчивость, т. е. соединятся в агрегаты.
Различные дисперсные системы могут обладать или очень высокой агрегативной устойчивостью, при которой они могут храниться в неизменном состоянии очень долгое время (даже годами), или, наоборот, очень низкой, когда их разрушение происходит вскоре после образования (например, через несколько секунд).
К термодинамическим факторам относятся электростатический, адсорбционно-сольватный и энтропийный факторы.
Одноимённый электрический заряд гранул приводит к взаимному отталкиванию сближающихся коллоидных частиц. Причём на расстояниях, превышающих диаметр мицелл, электростатическое отталкивание обусловлено, главным образом зарядом противоионов диффузного слоя. Если же быстро движущиеся частицы сталкиваются друг с другом, то противоионы диффузного слоя, будучи относительно слабо связанными с частицами, могут сместиться, и в результате соприкоснутся гранулы. При этом главную роль в силах отталкивания играет электрокинетический потенциал. А именно, если его значение превышает 70 – 80 мВ, то налетающие друг на друга в результате броуновского движения частицы не смогут преодолеть электростатический барьер и, столкнувшись, разойдутся и агрегации не произойдёт. О роли поверхностного натяжения, как термодинамического фактора устойчивости, говорилось в главе 1.
В реальных условиях устойчивость дисперсных систем обычно обеспечивается несколькими факторами одновременно. Наиболее высокая устойчивость наблюдается при совместном действии и термодинамических, и кинетических факторов.
Каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц. Сольватация может быть уменьшена или вовсе исключена лиофобизацией частиц дисперсной фазы при адсорбции соответствующих веществ. Действие электростатического фактора значительно снижается при введении в систему электролитов, сжимающих ДЭС. Этот последний случай наиболее важен как при стабилизации, так и при разрушении дисперсных систем.
6.3. Коагуляция
Как уже говорилось выше, в основе коагуляции лежит нарушение агрегативной устойчивости системы, приводящее к слипанию частиц дисперсной фазы при их столкновениях. Внешне коагуляция коллоидных растворов проявляется в виде помутнения, иногда сопровождающегося изменением цвета, с последующим выпадением осадка.
В образующихся при коагуляции агрегатах первичные частицы связаны друг с другом или через прослойку дисперсионной среды, или непосредственно. В зависимости от этого агрегаты могут быть или рыхлыми, легко подающимися пептизации, или достаточно прочными, часто необратимыми, которые пептизируются с трудом или вообще не пептизируются. В системах с жидкой дисперсионной средой, особенно при большой концентрации частиц дисперсной фазы, выпадение образующихся агрегатов в осадок часто сопровождается структурообразованием – образованием коагеля или геля, охватывающего весь объём системы.
Первой стадией коагуляции золя при нарушении его устойчивости является скрытая коагуляция, которая заключается в объединении лишь незначительного числа частиц. Скрытая коагуляция обычно не фиксируется невооружённым глазом и может быть отмечена лишь при специальном исследовании, например, с помощью ультрамикроскопа. Вслед за скрытой коагуляцией наступает явная, когда объединяется уже настолько значительное количество частиц, что это приводит к хорошо заметным изменению цвета, помутнению золя и выпадению из него рыхлого осадка (коагулята). Возникающие в результате потери агрегативной устойчивости коагуляты представляют собой оседающие (или всплывающие) образования различной структуры плотные, творожистые, хлопьевидные, волокнистые, кристаллоподобные. Структура и прочность коагулятов в значительной степени определяется степенью сольватации (гидратации) и присутствием на частицах адсорбированных веществ различной природы, в том числе ПАВ.
П. А. Ребиндером было подробно изучено поведение золей при коагуляции с не полностью снятыми защитными факторами и показано, что в таких случаях наблюдается коагуляционное структурообразование, приводящие к появлению гелеобразных систем (строение которых будет рассмотрено в главе 11).
Процесс, обратный коагуляции, называется пептизацией (см. п. 4.2.3). В ультрамикрогетерогенных системах, в которых энергия броуновского движения соизмерима с энергией связи частиц в агрегатах (флокулах), между коагуляцией и пептизацией может устанавливаться динамическое равновесие. Оно должно отвечать условию
½ zE = kT ln (Vз/Vк),
где z – координационное число частицы в пространственной структуре коагулята (иначе, - число контактов одной частицы в образующемся агрегате с другими частицами, входящими в него), E – энергия связи между частицами, находящимися в контакте, k – константа Больцмана, T – абсолютная температура, Vз – объём, приходящийся на одну частицу в коллоидном растворе, после образования коагулята (если концентрация частиц при этом равна частиц/м3, то Vз = 1/,), Vк – эффективный объём, приходящийся на одну частицу внутри коагуляционной структуры (или объём, в котором она колеблется относительно положения равновесия).
В лиофобных дисперсных системах после коагуляции концентрация частиц в равновесном золе обычно пренебрежимо мала по сравнению с их концентрацией. Поэтому в соответствии с вышеприведённым уравнением коагуляция является, как правило, необратимой. В лиофильных системах значения энергии связи между частицами невелики и поэтому
½ zE < kT ln (Vз/Vк),
то есть коагуляция или невозможна, или в высокой степени обратима.
Причины, вызывающие коагуляцию, могут быть самыми различными. Это и механические воздействия (перемешивание, вибрация, встряхивание), и температурные (нагревание, кипячение, охлаждение, замораживание), и другие, часто трудно объяснимые и непредсказуемые.
Но наиболее важной в практическом отношении и вместе с тем наиболее хорошо изученной является коагуляция под действием электролитов или электролитная коагуляция.
Электролит, вызывающий нарушение агрегативной устойчивости золя, называется электролитом-коагулятором (или коагулянтом).
Коллоидные растворы очень чувствительны к присутствию посторонних электролитов и коагуляция может быть вызвана даже присутствием малых их количеств. Например, коагуляция наступает очень быстро, практически сразу же после образования золя, если он был получен в плохо вымытой посуде, сохранившей следы солей, содержащихся в водопроводной воде. Однако в присутствии каких-то определённых очень малых количеств электролита-коагулятора коллоидные растворы способны сохранять агрегативную устойчивость. Наименьшая концентрация электролита, вызывающая явную коагуляцию коллоидного раствора, называется порогом коагуляции . Экспериментально порог коагуляции может быть определён постепенным (например, из бюретки) добавлением к исследуемому золю раствора электролита-коагулятора. Другой способ определения - приготовление серии растворов электролита с равномерно увеличивающейся концентрацией с последующим добавлением к ним одинаковых объёмов золя. Наступление коагуляции может отмечаться визуально или с помощью приборов. Чаще всего для этих целей используются оптические методы. В любом случае порог коагуляции может быть вычислен по формуле
,
или, более точно (с учётом разбавления)
где Сэк и Vэк - соответственно концентрация и объём раствора элктролита-коагулятора, Vзоль – объём коллоидного раствора.
Порог коагуляции обычно измеряется в моль/л или в ммоль/л. При этом следует помнить, что физический смысл этой размерности – количество электролита (моль или ммоль), способное вызвать коагуляцию 1 литра коллоидного раствора.
Кроме порога коагуляции в коллоидной химии используется и обратная ему величина – коагулирующая способность Р:
Размерность Р – л/моль или л/ммоль, что по физическому смыслу соответствует объёму золя, который может быть скоагулирован 1 молем (или миллимолем) электролита.
Порог коагуляции, а значит, и коагулирующая способность являются приблизительными характеристиками, так как зависят от очень многих факторов – от скорости прибавления электролита-коагулятора, от способа приготовления золя, от метода регистрации, от времени между добавлением электролита и моментом фиксирования явной коагуляции, от температуры и др.
Было обнаружено, что
(объединённое правило Г. Шульце (1882) М. Гарди (1900)). То есть коагуляцию золя с отрицательно заряженными гранулами будут вызывать катионы, а золя с положительно заряженными гранулами – анионы.
При этом отношение порогов коагуляции одно-, двух- и трёхзарядных коагулирующих ионов приблизительно обратно пропорционально шестой степени их валентности:
Было также замечено, что вблизи порога коагуляции абсолютная величина -потенциала, независимо от знака заряда гранулы, оказывается сниженной примерно до 25 - 30 мВ. Это его значение является критическим; при дальнейшем снижении величины -потенциала золь практически полностью теряет устойчивость. Это является доказательством того, что главным в электростатическом факторе устойчивости золей является значение электрокинетического потенциала. Тщательные исследования коагулирующего действия различных ионов с одинаковой величиной заряда показали, что они образуют ряды, близкие к лиотропным рядам адсорбции.
Когда факторы устойчивости сняты не полностью, не каждое столкновение мицелл может закончиться их агрегированием. При этом в большинстве случаев для полной коагуляции золя требуется значительное время. Такая коагуляция называется медленной. Если же защитный фактор практически отсутствует, то мы имеем дело с быстрой коагуляцией, когда каждое столкновение частиц приводит к их объединению.
Следует отметить, что термины “быстрая” и “медленная коагуляция” относятся к механизму процесса, а не к реальному времени его протекания. Так, при значительных концентрациях мицелл “медленная” коагуляция может закончиться за короткое время из-за большой частоты столкновений, а в системах с малой концентрацией мицелл из-за малой частоты столкновений “быстрая” коагуляция может идти достаточно долго. Но в большинстве случаев реальная скорость коагуляции всё же прямо определяется механизмом.
Экспериментальное изучение кинетики коагуляции показывает, что быстрая коагуляция наблюдается при -потенциале, равном нулю или при очень малых его значениях, намного более низких, чем критическое, а медленная при значениях, близких к критическому.
Коагуляцией под влиянием электролитов объясняется бóльшая прозрачность морской и океанской воды по сравнению с речной, озёрной или болотной. В пресной воде, в особенности, в речной всегда имеется большое число дисперсий, в том числе и коллоидных частиц, которые образуются при размывании глин, глинистых грунтов и почв, а также при выветриваии других горных пород и т. д. Эти частицы придают воде мутность, иногда значительную. При впадении рек в моря эти дисперсии встречают электролиты – соли, содержащиеся в морской воде, и коагулируют под их действием. Образующийся осадок (коагулят) формирует около устий рек отмели, простирающиеся на большие расстояния, иногда на много километров или даже десятков километров. За пределами этих отмелей вода прозрачна, потому что не содержит дисперсий.
Другими жизненно важными примерами электролитной коагуляции могут служить образование холестериновых бляшек на внутренних поверхностях кровеносных сосудов или отложение солей в суставах, которое происходит при нарушениях солевого баланса плазмы крови. Сходный механизм приводит и к агглютинации эритроцитов при свёртывании крови.
6.5. Теории коагуляции
Общей количественной теории агрегативной устойчивости и коагуляции пока не существует, хотя в процессе развития коллоидной химии возникло немало теорий, пытавшихся связать устойчивость гидрофобных золей и коагулирующее действие электролитов с теми или иными параметрами системы. Каждая из этих теорий объясняла ряд фактов, но оказывалась бессильной перед множеством других, поскольку эти теории, как правило, связывали сложный процесс коагуляции с каким-либо одним параметром системы.
Так, химическая теория П. Э. Дюкло выдвигала в качестве причины коагуляции химические реакции на границе раздела фаз, приводящие к нейтрализации поверхностного заряда.
Согласно электростатической теории Г. Мюллера увеличение концентрации ионов электролита-коагулянта приводит при постоянном заряде на поверхности частиц к снижению их -потенциала и, следовательно, к уменьшению устойчивости системы.
Теория А. И. Рабиновича рассматривала совместное действие ионного обмена и снижение -потенциала. Роль -потенциала в протекании коагуляции показана в п. 6.4. В теории В. Оствальда коагуляция рассматривалась как вытеснение дисперсной фазы межионными силами притяжения, действующими в дисперсионной среде. В этом представлении параметром, определявшим коагуляцию, является коэффициент активности электролита.
По-видимому, все описанные в этих теориях механизмы коагуляции в той или иной степени имеют место. Преобладающее значение какой-либо из них приобретает в зависимости от природы дисперсной системы и коагулянта, а также от внешних факторов – температуры, механических воздействий и др.
В настоящее время широкое признание и распространение получила теория, основанная на физическом подходе к процессу коагуляции. В наиболее общем виде эта теория была разработана советскими учёными Б. В. Дерягиным и Л. Д. Ландау в 1937 41 гг. и несколько позднее (1948 г.) независимо от них голландскими учёными Э. Фервеем и Й. Овербеком. По первым буквам их фамилий эта теория названа теорией ДЛФО. Следует отметить, что, как и другие перечисленные ранее теории, теория ДЛФО не может претендовать на полное описание механизма коагуляции. Однако она дает возможность получения некоторых количественных зависимостей, например, позволяет рассчитывать величины порогов коагуляции для различных электролитов.
Теория ДЛФО основана на сопоставлении межмолекулярных взаимодействий частиц дисперсной фазы в дисперсионной среде, электростатического взаимодействия диффузных ионных слоёв и теплового броуновского движения частиц дисперсной фазы.
Эта теория на строгой количественной основе обобщила и развила представления об электростатической устойчивости золей, использованные в работах Г. Мюллера, А. И. Рабиновича, В. А. Каргина. Как говорилось выше, добавление электролита в коллоидную систему ведёт к сжатию двойного электрического слоя и, соответственно, к уменьшению расстояния, на котором между частицами действуют силы электростатического отталкивания. В таких условиях частицы, точнее, их твёрдые основы («агрегаты»), при броуновском движении могут подходить друг к другу на более близкие расстояния. На малых расстояниях резко возрастает роль сил межмолекулярного притяжения.
Таким образом, при сближении частиц на них действуют два вида
Таким образом, взаимодействие налетающих друг на друга коллоидных частиц будет определяться балансом положительной энергии отталкивания и отрицательной энергии притяжения. Его можно изобразить графически в виде энергетической кривой взаимодействия (рис. 6.1).
Видно, что на результирующей кривой имеется два минимума и один максимум. Их наличие говорит о том, что на малых и больших расстояниях между коллоидными частицами преобладает энергия притяжения, а на средних расстояниях энергия отталкивания.
Рис. 6.1. Зависимость энергии взаимодействия сталкивающихся частиц
от расстояния
(1- энергия электростатического отталкивания; 2 - энергия притяжения;
3 – результирующая энергия взаимодействия; min 1 – дальний минимум;
min 2 – ближний минимум; max – максимум)
Минимум min 1 отвечает притяжению частиц через прослойку среды. При сближении частиц до расстояния, соответствующего этому минимуму, они притягиваются друг к другу и собираются во флокулы. Небольшая глубина минимума обусловлена ослабленными из-за расстояния силами притяжения и действием расклинивающего давления прослойки среды. Поэтому такие флокулы сравнительно легко могут быть разрушены введением пептизатора, а часто и просто энергичным перемешиванием.
Максимум на средних расстояниях характеризует потенциальный барьер, препятствующий непосредственному касанию частиц. Он связан с возникновением расклинивающего давления перекрывающихся адсорбционно-сольватных слоёв и со значением электрокинетического потенциала . Чем больше -потенциал, тем более высоко проходит линия 1, и тем выше потенциальный барьер, не дающий частицам подойти слишком близко друг к другу. Практика показывает, что потенциальный барьер, обеспечивающий агрегативную устойчивость дисперсной системы, возникает уже при -потенциале, равном 20 30 мВ. По теории ДЛФО роль электролита-коагулятора сводится к уменьшению потенциального барьера за счёт электростатической составляющей, связанной с величиной -потенциала. Количественные уравнения теории ДЛФО позволяют рассчитать соотношение порогов коагуляции золя различными электролитами. В соответствии с ними пороги коагуляции для одно-, двух- и трёхзарядных ионов должны относиться друг к другу обратно пропорционально шестой степени валентности ионов, что совпадает с соотношением, установленным правилом Шульце - Гарди.
Если потенциальный барьер невелик и энергия движения налетающих частиц превышает его, частицы могут сблизиться на расстояние, соответствующее минимуму min 2. Это сближение может привести к вытеснению гидратных оболочек и к непосредственному контакту. В случае твёрдых частиц это приводит к возникновению очень прочных связей и, как следствие, - к необратимой коагуляции, а в случае жидких или газовых частиц – к коалесценции (слиянию)
Теория ДЛФО носит приближённый характер, так как не учитывает многих факторов коагуляции, например, таких, как природа ионов с одинаковым зарядом, выражаемая лиотропными рядами коагуляции, специфическая адсорбция ионов и др.
В основе теории Смолуховского лежит представление о том, что при нарушении агрегативной устойчивости происходит слияние только двух частиц. Вероятность одновременной встречи в пространстве трёх или более частиц чрезвычайно мала, поэтому механизм коагуляции можно представить таким образом. При столкновении двух одиночных частиц возникает двойная частица, при столкновении двойной и одиночной – тройная, двух двойных – четверная и т. д. Таким образом, коагуляцию можно формально рассматривать как бимолекулярную химическую реакцию. Скорость коагуляции будет определяться концентрацией частиц в объёме системы и скоростью диффузии частиц, которая, в свою очередь зависит от вязкости среды и температуры. Теория позволила вывести уравнение, связывающее концентрацию укрупнённых (агрегированных) частиц а, образовавшихся за время t, с начальной концентрацией одиночных частиц 0:
где К – константа скорости коагуляции.
Поскольку константу скорости коагуляции трудно определить экспериментально или вычислить, можно использовать уравнение, включающее в себя время половинной коагуляции t1\2, за которое число частиц уменьшается вдвое. Из уравнения (6.1) следует, что
0/2 = 1 + K0 t1/2,
и значит
.
Время половинной коагуляции с учётом уравнений Фика для скорости диффузии и Эйнштейна для коэффициента диффузии можно вычислить по уравнению
где h - вязкость дисперсионной среды, k – константа Больцмана, T – абсолютная температура.
Аддитивное действие проявляется, как правило, в тех случаях, когда коагуляция вызывается ионами одной природы, входящими в состав разных электролитов, например, хлорид-ионами, входящими в состав KCl и NaCl. Так, например, если порог коагуляции KСI и NаС1 по отношению к какому-то золю равен 1 моль/л, то, если первого взято 1/3 моль/л, второго для наступления коагуляции требуется добавить 2/3 моль/л. Возможно аддитивное действие и тога, когда коагуляция вызывается близкими по свойствам ионами-коагуляторами, например, К+ и NH4+ (рис. 6.2, а).
1 и 2 соответственно пороги коагуляции 1-го и 2-го электролитов.
Линии изображают суммарный порог коагуляции при совместном
действии электролитов
Возможно и проявление синергического действия электролитов, при котором коагулирующее действие ионов взаимно усиливается. Например, при коагуляции золя золота солями лития и цезия суммарный порог смеси меньше, чем порог каждой соли в отдельности (рис. 6.2, в). Синергическое действие электролитов наиболее трудно поддаётся объяснению.
В литературе были отмечены и случае "обратного привыкания", при котором постепенное введение коагулянта вызывает уменьшение порога коагуляции.
Причиной его служит перезарядка золя, происходящая при адсорбции многозарядных катионов, обладающих очень высокой адсорбционной способностью. Вначале, при малых величинах абсорбции, снижается электрический заряд частиц, что приводит к коагуляции. Затем, при дальнейшей адсорбции, когда число положительных зарядов в адсорбционном слое превысит число отрицательных, заряд частиц (гранул) изменится с отрицательного на положительный, и золь вновь стабилизируется. При очень больших концентрациях золь вновь коагулирует уже под действием анионов того же электролита, т. е. наступает второй порог коагуляции. Схема изменения -потенциала коллоидного раствора с ростом концентрации коагулянта, содержащего многозарядные катионы, показана на рис. 6.3.
Примером взаимной коагуляции является очистка воды с применением квасцов от трудноудаляемой другими способами глинистой мути. Если в мутную воду добавить небольшое количество алюмокалиевых квасцов (примерно 1 - 2 г на 1 м3 воды) и подогреть её, то квасцы гидролизуются с образованием положительно заряженного золя гидроксида алюминия. Частицы этого золя, встречаясь с отрицательно заряженными глинистыми дисперсиями, заставят их скоагулировать. Вместе с тем и золь гидроксида алюминия скоагулирует под действием глинистых частиц. В результате коагулят выпадет в осадок, который легко может быть отфильтрован или отделён декантацией (сливанием воды). Следует помнить, что сульфат калия, содержащийся в квасцах, тоже принимает участие в коагуляции и практически полностью увлекается в коагулят.
+ +75мВ
|
![]() |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
С |
75 мВ - |
|
|
|
|
|
Рис. 6.3. Зависимость электрокинетического потенциала золя от концентрации электролита с многовалентными катионами и перезарядка
(выделены зоны коагуляции)
6.11. Коллоидная защита
При введении в золь определённых высокомолекулярных веществ (ВМВ) устойчивость системы к действию электролитов может быть значительна повышена. Это происходит из-за образования на поверхности частиц адсорбционного слоя из молекул ВМВ, который обладает повышенной вязкостью и плотностью и, таким образом, придаёт золю дополнительный адсорбционно-сольватный фактор устойчивости. Такое явление получило название коллоидной защиты. Защитное высокомолекулярное вещество как бы придаёт золю свои свойства. Так, многие золи, вообще не поддающиеся концентрированию до высокого содержания дисперсной фазы, в присутствии ВМВ можно выпарить досуха, а затем сухой остаток может быть снова коллоидно растворён. У защищённых золей изменяются многие свойства, например, электрофоретическая подвижность, они перестают подчиняться правилу Шульце Гарди.
Коллоидная защита используется в фармации для приготовления ряда лекарственных средств - протаргола, колларгола, коллоидного золота, сухих экстрактов и др. Так, колларгол и протаргол представляют собой золи, состоящие, в основном, из серебра, которые стабилизированы лизальбиновой или протальбиновой кислотами – веществами белковой природы. Защитное действие этих ВМВ настолько велико, что колларгол и протаргол могут быть высушены до состояния порошка, а при попадании в воду - вновь образовать коллоидный раствор.
Для количественной характеристики защитного действия различных ВМВ Р. Зигмонди предложил так называемое "золотое число". Под ним подразумевается число миллиграммов ВМВ, которое необходимо добавить к 10 мл красного золя золота для того, чтобы предотвратить его коагуляцию при введении 1 мл 10%-ного раствора NaCl. (Красный золь золота – очень высокодисперсный коллоидный раствор золота, обычно стабилизированный ауратом калия. При потере агрегативной устойчивости он резко изменяет окраску на синюю, что связано с начинающимся укрупнением частиц. Это хорошо заметное посинение делает красный золь золота удобным объектом для изучения коагуляционных процессов. В фармации этот золь ранее использовался в тех же целях, что и колларгол и протаргол, т. е. как сильное обеззараживающее средство).
Золотое число является достаточно условной характеристикой защитного действия, так как не учитывает многих факторов дисперсности золя, его концентрации, молекулярного веса ВМВ, рН системы и т. д. Наиболее ярко выраженным защитным действием по отношению к золям металлов обладают вещества белковой природы желатин (з. ч. 0,01), гемоглобин (з. ч. 0,03 0,07), казеин (з. ч. 0,01), протальбиновая и лизальбиновая кислоты и др.
Председатель проф. Е. Н. Вергейчик, проф. В. Г. Беликов, проф. В. И. Погорелов, проф. Ю. Г. Пшуков, проф. М. Д. Гаевый, проф. Д. А. Муравьева, доц. В. В. Гацан, доц. Б. И. Литв
10 09 2014
14 стр.
Криминалистика: Курс лекций / Е. Р. Россинская; Московская государственная юридическая академия. М.: Норма: инфра-м, 2010. 384 с.: 60x90 1/16
14 12 2014
1 стр.
Радаев А. А. Краткий курс лекций по экологии для студентов гуманитарных специальностей Часть I правовое регулирование природопользования
14 12 2014
1 стр.
Работа выполнена на кафедре физической и коллоидной химии Российского государственного университета нефти и газа имени И. М. Губкина
10 10 2014
4 стр.
Предмет физической химии. Значение физической химии для фармации, медицины и биологии. Физико-химические методы исследования и анализа, используемые в фармации
30 09 2014
1 стр.
Укажите температуру, для которой в справочниках приводятся стандартные термодинамические величины
13 10 2014
3 стр.
Бекетов А. И. Курс лекций по фармакологии (учебное пособие для отечественных и иностранных студентов): в 2 ч. Часть – 2-е изд., перераб и доп. – Симферополь, 1998. – 100 с
15 09 2014
10 стр.
Основными классами неорганических соединений являются оксиды, кислоты, соли и основания
10 10 2014
4 стр.