Перейти на главную страницу
Если частицы дисперсной фазы достаточно малы, как это имеет место в ультрамикрогетерогенных (коллоидных) системах, то обнаруживается их участие в тепловом движении. Оно проявляется в виде непрерывного самопроизвольного хаотического перемещения частиц, иначе называемого броуновским движением (по имени открывшего его в 1827 г. английского ботаника Р. Броуна (Брауна)). Броуновское движение наблюдается в системах с жидкой и газовой средой, где оно является причиной диффузии.
Движение частиц, названное его именем, Р. Браун обнаружил при рассматривании с помощью микроскопа спор папоротника и цветочной пыльцы, взвешенных в воде. Предположение о том, что причиной его является способность к движению живых объектов, вскоре пришлось оставить, так как мельчайшие частицы мрамора и других неживых материалов вели себя подобным же образом. Очень мелкие частицы при этом перемещаются на расстояния, во много раз превышающие их собственные размеры, более крупные частицы находятся в состоянии постоянного колебания (дрожания) около положения равновесия. Дрожание и перемещение частиц ускоряется с повышением температуры и не связано с какими-либо внешними механическими воздействиями. Долгое время природа броуновского движения оставалась непонятной, пока в 1904 г. М. Смолуховский не объяснил её на основе атомно-молекулярного учения.
Причиной броуновского движения является то, что молекулы среды (жидкости или газа) сталкиваются с частицей дисперсной фазы, в результате чего она испытывает огромное число одновременных ударов со всех сторон. Если частица имеет по сравнению с молекулами большие размеры, то число этих ударов так велико, что по законам статистики результирующий импульс оказывается равным нулю, и такая частица не будет двигаться, чему способствует также её значительная инертность. В случае малых частиц ультрамикрогетерогенных систем вероятность неравномерного распределения импульсов, получаемых с разных сторон, увеличивается. В результате в зависимости от размеров и конфигурации частица приобретает колебательное, вращательное или поступательное движение. Таким образом, броуновское движение явилось первым экспериментальным подтверждением существования молекул и справедливости атомно-молекулярного учения.
Броуновское движение является главной движущей силой перемещения коллоидных частиц при диффузии.
Количественной характеристикой броуновского движения принято считать средний сдвиг х частицы за время t, т. е. наблюдаемую проекцию отрезка прямой, соединяющей начальную точку движения (при t = 0), с положением частицы в момент t, на горизонтальную плоскость (рис. 7.1).
Рис. 7.1. Средний сдвиг частицы при броуновском движении
где К – коэффициент пропорциональности, в соответствии с теорией Эйнштейна равный
(k – константа Больцмана). Отсюда получаем уравнение Эйнштейна – Смолуховского для величины среднего квадратичного сдвига
или для среднего сдвига
где D коэффициент диффузии частиц данного вещества в данной среде.
Физический смысл коэффициента диффузии можно выяснить из рассмотрения первого закона А. Фика (1855 г.) для диффузии, согласно которому
,
где jдиф поток диффузии, равный количеству dm вещества, проходящему за время dt через площадь сечения S, перпендикулярного направлению диффузии; dC/dx градиент концентрации, D коэффициент диффузии. Знак “минус" показывает, что диффузия направлена в сторону, противоположную градиенту концентрации.
А. Эйнштейном было выведено уравнение для расчёта коэффициента D. Исходным положением при выводе явилось то, что движущей силой диффузии является градиент концентрации. При этом на одну частицу действует средняя сила
где NA число Авогадро, С – молярная концентрация диффундирующего вещества.
Поскольку движение частиц происходит в среде с вязкостью , скорость их перемещения может быть выражена с использованием уравнения Стокса:
(В – коэффициент трения по Стоксу, r – радиус движущейся частицы).
Сопоставляя это выражение и уравнение 1-го закона Фика, получаем уравнение Эйнштейна для коэффициента диффузии:
где k константа Больцмана, k = R/NA.
Уравнения Эйнштейна и Эйнштейна – Смолуховского получены на основании предположения о тепловой природе броуновского движения. Поэтому сами они не могут служить доказательством правильности такого предположения, но помогают подтвердить его экспериментально. Справедливость закона Эйнштейна – Смолуховского для лиозолей была подтверждена Т. Сведбергом (1909), который с помощью ультрамикроскопа непосредственно измерял средний сдвиг частиц коллоидного золота в зависимости от времени и вязкости среды. Несколько позднее Ж. Перрен (1910) использовал закон Эйнштейна – Смолуховского для первого экспериментального определения числа Авогадро при изучении броуновского движения коллоидных частиц гуммигута в воде. Полученное им значение находилось в хорошем соответствии с теоретически вычисленными другими методами значениями числа Авогадро.
Первый закон Фика имеет ограничения, а именно, он применим для изучения только стационарной диффузии, при которой градиент концентрации не меняется во времени. В большинстве же случаев диффузия является нестационарной, так как в замкнутом объёме в результате диффузии концентрация частиц постепенно выравнивается и градиент концентрации приближается к нулю. Для учета нестационарности процесса уравнение первого закона Фика дифференцируется по координате х (в первом приближении - для одномерной диффузии в ячейке постоянного сечения единичной площади):
Для разбавленных систем, когда коэффициент диффузии не зависит от концентрации, а, следовательно, и от направления координаты х, получаем другую запись этого уравнения, называемую иногда уравнением второго закона Фика:
Это уравнение учитывает изменение концентрации во времени, происходящее в результате диффузии.
Все законы и закономерности диффузии, полученные при изучении коллоидных растворов, в полной мере применимы и к диффузии в истинных растворах, как в молекулярных, так и в растворах электролитов. Используя уравнение Эйнштейна – Смолуховского по известной скорости диффузии можно вычислить коэффициенты диффузии веществ, в том числе и лекарственных, что существенно для изучения поведения лекарств в жидких средах организма. С другой стороны, зная коэффициент диффузии, можно оценить размеры молекул лекарственных веществ, что также очень важно при изучении возможности проникновения их через поры в биологических мембранах – стенках клеток, кровеносных сосудов и т. д.
7.2. Седиментация и седиментационная устойчивость
Седиментация это направленное движение частиц (оседание или всплывание) в поле действия гравитационных или центробежных сил. Скорость седиментации зависит от массы, размера и формы частиц, вязкости и плотности среды, а также от ускорения силы тяжести и действующих на частицы центробежных сил. В гравитационном поле седиментируют частицы грубодисперсных систем, в поле центробежных сил возможны седиментация коллоидных частиц и макромолекул высокомолекулярных веществ. Седиментации противостоит диффузия стремление к равномерному распределению частиц по высоте вследствие броуновского движения. Если между этими процессами устанавливается седиментационно-диффузиониое равновесие, то это означает, что дисперсная система сохраняет седиментационную устойчивость.
Направление седиментации определяется разностью плотностей вещества дисперсной фазы и дисперсионной среды. Если частицы дисперсной фазы более плотные, чем дисперсионная среда, то происходит оседание или прямая седиментация. Если же имеет место обратное соотношение плотностей, то происходит всплывание частиц или обратная седиментация.
Седиментация наблюдается в свободнодисперсных микрогетерогенных системах, из которых наиболее широко распространены (в том числе и в фармации) такие, как суспензии, эмульсии, аэрозоли.
На каждую частицу в системе действуют сила тяжести и сила вязкого сопротивления среды. Сила тяжести в соответствии с законом Ньютона равна
или с учётом выталкивающей силы Архимеда
где m и r соответственно масса и радиус частицы, и 0 плотности соответственно частиц дисперсной фазы и дисперсионной среды, g ускорение силы тяжести.
Сила вязкого сопротивления среды определяется законом Стокса и равна
,
где вязкость дисперсионной среды, r радиус частицы; v скорость её движения.
После некоторого начального промежутка времени, когда седиментирующая частица движется с ускорением, эти две силы уравновешивают друг друга и движение частицы становится равномерным. При этом
Fg = F
и, следовательно
4/3 r3( 0) g = 6rv ,
откуда получаем уравнение Стокса для скорости седиментации:
Если > 0, то происходит оседание частицы, если же < 0, то всплывание, т. е. обратная седиментация, характерная для газовых и большинства жидкостных эмульсий. При условии = 0 числитель уравнения Стокса обращается в нуль, и в соответствии с этим седиментация не будет происходить. Таким образом, равенство или близость значений плотностей вещества частиц и дисперсионной среды является одним из факторов седиментационной устойчивости дисперсных систем. Другим важным фактором устойчивости является степень дисперсности частиц. Из уравнения Стокса следует, что скорость седиментации будет уменьшаться пропорционально квадрату их радиуса, т. е. чем больше степень дисперсности, тем больше и седиментационная устойчивость. Третьим фактором, влияющим на устойчивость систем, является вязкость дисперсионной среды. Так как величина стоит в знаменателе уравнения Стокса, скорость седиментации будет замедляться в средах с повышенной вязкостью, т. е. чем больше вязкость среды, тем больше седиментационная устойчивость дисперсной системы. В связи с этим системы с газовой дисперсионной средой – аэрозоли, пыли, туманы, - являются в высокой степени седиментационно неустойчивыми из-за малой плотности и вязкости воздушной среды. Наоборот, системы с твёрдой средой, обладающей бесконечно большой вязкостью, являются совершенно устойчивыми седиментационно, так как оседание и вообще любое перемещение частиц дисперсной фазы в них отсутствует.
Отношение скорости седиментации к ускорению силы тяжести называется константой седиментации Sсед:
.
Размерность константы седиментации в системе СИ – с. Для большинства дисперсных систем, являющихся объектами изучения коллоидной химии, она имеет очень малые значения, поэтому в качестве единицы Sсед выбран сведберг (Сб), равный 1013 с. Используются также и кратные величины – мегасведберг (МСб = 106 Сб), гигасведберг (ГСб = 109 Сб). Возможно представление Sсед и непосредственно в секундах.
(Это выражение будет справедливо только в том случае, когда центробежная сила намного превышает силу тяжести, что обычно и имеет место при использовании ультрацентрифуги). При установившемся равновесии
Разделяя переменные в этом уравнении и интегрируя его в пределах от х0 до х и от t = 0 до t
получим
или, так как ,
Седиментационный анализ – это совокупность методов определения размеров частиц в дисперсных системах по скорости седиментации. При оседании в гравитационном поле можно определить размеры частиц микрогетерогенных систем, а при оседании в центробежном поле ультрацентрифуги - частиц коллоидных систем или даже размеры макромолекул в растворах высокомолекулярных веществ.. В химической технологии, а также в фармации этот вид анализа применяется для определения размеров частиц суспензий, эмульсий, порошков и др. В медицине в диагностических целях широко используется такая разновидность его, как определение скорости оседания эритроцитов (СОЭ).
При седиментационном анализе измеряется скорость накопления осадка во времени или другие пропорциональные ей величины. В гравитационном поле он проводится с помощью седиментометров различных конструкций. Ниже описано принципиальное устройство некоторых, наиболее употребительных из них.
Наиболее простой седиментометр представляет собой узкий стеклянный сосуд – цилиндр, пробирку или градуированную стеклянную трубку (например, микропипетку с закрытым для предотвращения выливания содержимого выходным отверстием). Скорость накопления осадка измеряется или по увеличению во времени высоты его слоя (как, например, при анализе СОЭ), или по увеличению свободной от частиц области суспензии в верхней части сосуда, т. е. по её осветлению. При исследовании эмульсий осветляться будет нижний, прилегающий ко дну слой жидкости. Такие седиментометры дают очень приблизительные результаты и к тому же они пригодны для исследования преимущественно монодисперсных систем.
Для более точных измерений используют и более сложные по конструкции седиментометры. Один из них, седиментометр Н. А. Фигуровского, представляет собой тонкую упругую стеклянную нить, одним концом закреплённую в штативе. К свободному концу на тончайшей нити или на волосе подвешивается лёгкая чашечка, изготовленная, например, из алюминиевой фольги.. Эта чашечка погружается в высокий цилиндр с исследуемой суспензией так, чтобы она находилась почти у дна. Частицы суспензии, оседая на чашечку, заставляют прогибаться стеклянную нить. Для измерения высоты прогиба нити служит вертикальная шкала, помещённая сзади неё. При достаточно упругой нити высота её прогиба прямо пропорциональна массе осевших на чашечку частиц. Измерения проводятся следующим образом. В хорошо перемешанную суспензию опускается чашечка седиментометра и в этот момент начинается отсчёт времени. Через определённые промежутки времени измеряется и записывается высота, на которую опустился свободный конец стеклянной нити. Измерения производятся до тех пор, пока не закончится оседание частиц, о чём можно заключить по получению трёх одинаковых отсчётов по шкале подряд.
Седиментометр С. Одена – это усовершенствованный вариант седиментометра Фигуровского. Вместо гибкой стеклянной нити чашечка в нём подвешивается к коромыслу торсионных весов, что позволяет контролировать во времени непосредственно массу оседающих частиц.
Седиментометр Вигнера представляет собой U-образную трубку, одно колено которой широкое, а другое – узкое, в виде градуированного капилляра. В широкое колено помещается исследуемая суспензия, а в узкий капилляр – чистая дисперсионная среда (вода в случае гидросуспензий). Накапливающийся на дне широкого колена осадок заставляет подниматься уровень жидкости в капилляре, высота которого и измеряется через определённые интервалы времени.
Решая уравнение Стокса относительно радиуса частицы, получим:
Отсюда следует, что, экспериментально измеряя скорость седиментации v и зная величины , и 0, легко рассчитать радиус частицы.
Уравнение Стокса справедливо, если частицы дисперсной фазы осаждаются независимо друг от друга, что может быть только в разбавленных системах. При столкновениях частиц осаждение обычно замедляется. Кроме того, оседание частиц в концентрированных системах заметно тормозится встречным потоком жидкости, поднимающейся со дна сосуда. Вносит искажения в седиментацию и неправильная форма частиц. В этом случае радиус, рассчитанный по уравнению Стокса, будет являться так называемым эквивалентным радиусом, равным радиусу сферической частицы, которая оседает с той же скоростью, что и данная реальная частица.
Зависимость скорости накопления осадка от времени, полученная с помощью седиментометра, изображается графически в виде седиментационной кривой. Анализ седиментационной кривой позволяет получать информацию о размерах частиц дисперсной фазы и о фракционном составе суспензии, эмульсии или порошка (который при смешивании с водой или другой жидкостью образует суспензию). Реальные суспензии полидисперсны и в них частицы с различными размерами оседают с различными скоростями. Седиментометр же регистрирует суммарную массу оседающих частиц всех размеров. Чтобы разобраться в принципе седиментационного анализа, предложенного С. Оденом, рассмотрим сначала седиментацию монодисперсной суспензии.
Она графически отображается в виде седиментационной кривой, показанной на рис. 7.2. Она представляет собой зависимость массы m накапливающегося осадка от времени t.
Если m - общая масса дисперсной фазы, h – первоначальная высота столба суспензии, то m/ h – масса дисперсной фазы в объёме, приходящемся на единицу длины столба суспензии. При скорости осаждения частиц v в течение произвольного времени t < t вещество осядет из столба высотой vt, а масса осадка, накопившаяся за это время, выразится уравнением
Так как величины m, h и v постоянны, то масса частиц, осевших из монодисперсной суспензии, прямо пропорциональна времени седиментации, что и отражается линейным участком ОВ на рис. 7.2. Подставляя значение скорости оседания из уравнения Стокса, получим
откуда можно рассчитать радиус частиц
и удельную поверхность суспензии по массе
и по объёму
В отличие от монодисперсных в полидисперсных системах частицы оседают с различными скоростями, поскольку имеют разные размеры. Если система достаточно разбавлена и её частицы движутся независимо друг от друга, можно представить, что в одном объёме одновременно происходит оседание нескольких монодисперсных суспензий. Ход седиментации каждой из них будет выражаться графиками, аналогичными рис. 7.2. Причём, чем меньше диаметр частиц, тем более пологой будет участок ОВ и тем больше время полного оседания всех одинаковых частиц.
Седиментационная кривая бидисперсной суспензии (рис. 7.3) получается геометрическим сложением двух кривых, принадлежащих более крупным и более мелким частицам.
Рис. 7.3. Седиментационная кривая бидисперсной суспензии
1 – кривая для суспензии с крупными частицами;
2 – кривая для суспензии с мелкими частицами
3 – суммарная кривая
Из сравнения рис. 7.2 и рис. 7.3 следует, что отрезки FB’ и DC’ соответствуют массам частиц крупной и мелкой фракций, а отрезки DC и 0G – суммарной массе m осадка, состоящего из крупных и мелких частиц, и образовавшегося после полного оседания суспензии (время t2). Продлим линию ВС до пересечения с осью ординат (точка Е). Видно, что при этом образуются два отрезка, причём 0Е соответствует массе крупных частиц m1 (0Е = FB’), а EG - массе мелких частиц m2 (EG = DC’). То есть, исходя из положения излома на суммарной седиментационной кривой, при анализе бидисперсной суспензии можно определить массы частиц каждой фракции, несмотря на то, что они оседают одновременно.
Аналогичная картина будет наблюдаться и при анализе суспензий, содержащих по три, четыре и т. д. фракции частиц. На седиментационной кривой при этом будет проявляться соответственно три, четыре и т. д. излома, по положению которых можно вычислить массу каждой фракции.
В реальных полидисперсных суспензиях имеются частицы всех возможных в данном интервале размеров. Поэтому на седиментационных кривых, получаемых при их анализе, нет изломов, отвечающих оседанию частиц каждого размера, и они представляют собой плавные кривые, аналогичные показанной на рис. 7.4.
Председатель проф. Е. Н. Вергейчик, проф. В. Г. Беликов, проф. В. И. Погорелов, проф. Ю. Г. Пшуков, проф. М. Д. Гаевый, проф. Д. А. Муравьева, доц. В. В. Гацан, доц. Б. И. Литв
10 09 2014
14 стр.
Криминалистика: Курс лекций / Е. Р. Россинская; Московская государственная юридическая академия. М.: Норма: инфра-м, 2010. 384 с.: 60x90 1/16
14 12 2014
1 стр.
Радаев А. А. Краткий курс лекций по экологии для студентов гуманитарных специальностей Часть I правовое регулирование природопользования
14 12 2014
1 стр.
Работа выполнена на кафедре физической и коллоидной химии Российского государственного университета нефти и газа имени И. М. Губкина
10 10 2014
4 стр.
Предмет физической химии. Значение физической химии для фармации, медицины и биологии. Физико-химические методы исследования и анализа, используемые в фармации
30 09 2014
1 стр.
Укажите температуру, для которой в справочниках приводятся стандартные термодинамические величины
13 10 2014
3 стр.
Бекетов А. И. Курс лекций по фармакологии (учебное пособие для отечественных и иностранных студентов): в 2 ч. Часть – 2-е изд., перераб и доп. – Симферополь, 1998. – 100 с
15 09 2014
10 стр.
Основными классами неорганических соединений являются оксиды, кислоты, соли и основания
10 10 2014
4 стр.