Перейти на главную страницу
Заключается в следующем:
Вода поступает по водопроводу в парогенератор. Контроль за уровнем жидкости в парогенераторе осуществляют с помощью водомерной трубки. После включения стерилизатора, начинают нагреваться тэны, благодаря чему вода нагревается до рабочей температуры. В результате образуется пар. При достижении в парогенераторе давления пара 0,11 МПа открывается вентиль «Пар в камеру» и вентиль «Слив конденсата». Происходит продувка и прогрев стерилизационной камеры, после чего вентиль «Слив конденсата» закрывается. При достижении в стерилизационной камере рабочего давления (контролируется электроконтактным манометром) происходит отчет времени стерилизации. В процессе стерилизации происходит автоматическое включение и отключение стерилизатора с помощью электроконтактного манометра. Контроль за давлением в стерилизационной камере осуществляется моновакуумметром. После проведения стерилизации аппарат отключают от сети и перекрывают вентиль «Пар в камеру». Далее, по мере падения давления в стерилизационной камере до 0,06 МПа (контроль осуществляется по моновакуумметру) открывается вентиль «Вакуум». В стерилизационной камере создается разряжение. Происходит процесс сушки стерилизуемого материала. По истечении сушки открывается вентиль «Воздух в камеру». При этом происходит выравнивание давления в стерилизационной камере с атмосферным давлением.
1.2 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
Студенты знакомятся с принципами составления и классификацией питательных сред, методами стерилизации питательных сред, посуды, инвентаря, изучают устройство парового стерилизатора и принцип его работы и кратко конспектируют изложенный в теоретической части материал. Затем готовят посуду, питательные среды и ватно-марлевые пробки для проведения микробиологического анализа.
1.2.1 Приготовление посуды для проведения микробиологического
анализа
Для проведения микробиологического анализа используют чашки Петри, которые герметично упаковываются в пергаментную бумагу и стерилизуются. Пипетки на 1 см3 закрывают ватными тампонами и также заворачивают в бумагу. Колбы закрывают ватно-марлевыми пробками и сверху делают колпачки из пергаментной бумаги.
Стерилизация посуды осуществляется в автоклаве при избыточном давлении 0,1 МПа в течение 30-40 минут или сухим жаром в сушильном шкафу или печи Пастера при 165-170 0С в течение 1-1,5 часа.
Стерильную посуду следует хранить в плотно закрывающихся шкафах или ящиках с крышками в течение не более 30 суток.
Заключается в растворении определенного количества порошка в воде, доведении полученной смеси до кипения и кипячении в течение 5 минут. Далее (при необходимости) среда фильтруется через ватно-марлевый фильтр и разливается в пробирки или колбы, которые закрываются ватно-марлевыми пробками. Далее среды стерилизуют в автоклаве. С использованием сухих сред готовят мясопептонный бульон (МПБ), мясопептонный агар (МПА), среду Сабуро, среду Кесслера, среду для определения мезофильный аэробных и факультативно-анаэробных микроорганизмов (среда для определения КМАФАнМ), среду Эндо и др.
Проводится по методикам, описанным в приложении 2 данного лабораторного практикума.
ВИДЫ МИКРОСКОПИИ. ПРИГОТОВЛЕНИЕ ФИКСИРОВАННЫХ ПРЕПАРАТОВ БАКТЕРИЙ И ОКРАСКА ИХ ПРОСТЫМИ МЕТОДАМИ
Тубус – зрительная труба микроскопа. В верхнее отверстие тубуса свободно вставляется окуляр, на нижнем конце тубуса находится вращающееся вокруг своей оси револьверное устройство (револьвер), в которое ввинчиваются объективы. Вращая револьвер, можно быстро сменить объективы во время работы с микроскопом, подводя любой объектив под тубус. Объектив должен быть центрирован, т.е. установлен на оптическую ось микроскопа. Для этого револьвер поворачивают вокруг своей оси до появления щелчка.
Предметный столик служит для размещения на нем изучаемого препарата. Препарат закрепляют на столике зажимами (клеммами). В центре предметного столика находится отверстие для прохождения лучей света и освещения препарата. В некоторых конструкциях микроскопа предметный столик может передвигаться с помощью винтов, расположенных по периферии предметного столика. Это дает возможность рассмотреть препарат в различных полях зрения.
![]() |
1 – окуляр 2 – монокулярная насадка (тубус) 3 – револьверное устройство 4 - объектив 5 – предметный столик 6 - конденсор 7 – корпус коллекторной линзы 8 – патрон с лампой 9 - шарнир 10 – рукоятка перемещения кронштейна конденсора 11– рукоятка тонкой фокусировки (микрометрический винт) 12 – рукоятка грубой фокусировки (макрометрический винт) 13 - тубусодержатель 14 – винт для крепления насадки |
Окуляр (от лат. oculus – глаз) состоит их двух плосковыпуклых линз, заключенных в общую металлическую оправу. Верхняя линза – глазная (увеличивающая), нижняя – собирающая. Расстояние между линзами равно полусумме их фокусного расстояния. У окуляров с большим увеличением фокус короче, поэтому меньше и длина окуляра. Между линзами имеется диафрагма, ограничивающая поле зрения и задерживающая краевые лучи света. Отечественные микроскопы снабжены тремя сменными окулярами, увеличение которых указано на корпусе окуляра (х7; х10; х15).
Объективы ввинчиваются в гнезда револьверного устройства и состоят из системы линз, заключенных в металлическую оправу. Передняя (фронтальная) линза объектива является самой маленькой и единственной, дающей увеличение. Остальные линзы в объективе только исправляют недостатки полученного изображения (явления сферической и хроматической аберрации) и называются коррекционными.
В гнезда револьверного устройства ввинчиваются четыре объектива, увеличение которых указано на корпусе объектива (х8; х20; х40; х90 или 100). Каждый объектив характеризуется своим фокусным расстоянием (расстоянием между предметным стеклом и фронтальной линзой): объектив х8 имеет фокусное расстояние около 9 мм, объектив х40 – 0,65 мм, объектив х90 – 0,15 мм.
Объективы подразделяются на сухие и иммерсионные.
При работе с сухими объективами (х8, х20, х40) между фронтальной линзой и препаратом находится воздух. В этом случае лучи света проходят среды с различными показателями преломления (покровное стекло, воздух), часть их отклоняется и не попадает в объектив.
При работе с иммерсионными объективами (х90 или х100) для устранения светорассеяния расстояние между фронтальной линзой объектива и препаратом заполняют иммерсионным (кедровым) маслом, показатель преломления лучей света которого близок к показателю преломления лучей света, проходящего через стекло.
Общее увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра. Например, если в работе используют окуляр х15, а под тубусом находится объектив х90, то увеличение рассматриваемого с помощью микроскопа объекта составит х1350.
Конденсор служит для лучшего освещения препарата. Он собирает световые лучи в пучок и направляет их через отверстие предметного столика на препарат. С помощью рукоятки для перемещения кронштейна конденсора его можно перемещать вверх и вниз, благодаря чему меняется угол сходимости лучей и, следовательно, степень освещения объекта. Чем выше положение конденсора, тем лучше освещен препарат.
Ирис-диафрагма располагается под конденсором и служит для регулировки потока света, поступающего в конденсор. Она состоит из металлических серповидных пластинок. Расширить или сузить отверстие диафрагмы можно с помощью специального рычажка. При вращении его по часовой стрелке отверстие ирис-диафрагмы увеличивается и, следовательно, увеличивается степень освещения объекта.
При работе с иммерсионными объективами степень освещения препарата должна быть максимальной, поэтому шторку ирис-диафрагмы открывают, а конденсор поднимают в крайнее верхнее положение.
При работе с сухими объективами, как правило, рассматривают неокрашенные объекты. Для достижения контрастности конденсор опускают вниз, а отверстие ирис-диафрагмы уменьшают.
Правила работы с микроскопом
Общее увеличение не характеризует качества изображения, которое может быть четким и нечетким.
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() g ![]() 3 ![]() ![]() 5 ![]() ![]() |
g - отверстный угол; a - апертурный угол; 1 – фронтальная линза объектива; 2 – пространство между объектом и объективом; 3 – предметное стекло с объектом; 4 - конденсор; 5 - диафрагма; рр1 - главная оптическая ось |
Рис. 2 Схема, иллюстрирующая понятие апертурного угла
Таким образом, повысить разрешающую способность микроскопа можно путем:
Используется для исследования слишком малых и слабоконтрастных живых объектов. При микроскопии этим методом используют специальный конденсор темного поля, центр которого затемнен. Поэтому центральный пучок световых лучей не попадает в объектив и поле зрения микроскопа остается темным. Объект освещается только лучами, попадающими на него под углом. Рассеиваясь на объекте, часть лучей изменяет направление и попадает на объектив. Объект становится видимым как светящаяся точка на темном фоне. Метод темного поля позволяет получить представление о внешней форме живых неокрашенных объектов и их движении.
Микроскопия в темном поле позволяет увеличить разрешающую способность объектива примерно в 10 раз и рассматривать объекты, размеры которых находятся за пределами обычного микроскопа. Повышение разрешающей способности достигается за счет увеличения апертурного угла.
Фазово-контрастная микроскопия
Дает возможность изучать живые объекты без окраски и фиксирования. Глаз человека реагирует на изменения амплитуды световой волны (интенсивность, контрастность) и ее длины (цвет), но не воспринимает различий по фазе. В биологических препаратах чередуются места, которые в разной степени поглощают свет. Проходя через них, световые волны изменяют свою амплитуду. Такие участки объекта называют амплитудными, и под микроскопом они выглядят более темными. Прозрачные в видимом свете структурные элементы объектов пропускают лучи одинаковой длины и амплитуды, но смещают их фазу. Величина смещения зависит от толщины и показателя преломления структур, но видимых изменений практически не дает. Такие препараты являются неконтрастными.
С помощью фазово-контрастного устройства фазовые изменения световых волн, проходящих через прозрачные объекты, превращаются в амплитудные, благодаря чему детали рассматриваемых объектов становятся видимыми и контрастными.
Фазово-контрастное устройство дает возможность изучать структуры клеток: жгутики и оболочки бактерий, ядра и митохондрии дрожжей и грибов.
Таким образом, хотя разрешающая способность при использовании фазово-контрастной микроскопии не меняется при сравнении со светопольной, качество изображения улучшается за счет повышения контрастности.
Люминесцентная микроскопия
Люминесцентная микроскопия позволяет изучать клетки в живом виде, выявлять мембранные структуры и получать высококонтрастные цветные изображения микроорганизмов.
Сущность явления люминесценции заключается в том, что некоторые молекулы структурных элементов клетки (пигменты, витамины, алкалоиды и др.) способны поглощать часть энергии падающего света определенной длины волны, переходить в электронно-возбужденное состояние и испускать свет с другой длиной волны. Источником возбуждения могут быть ультрафиолетовые лучи (300-400 нм) и видимый свет коротковолновой области спектра (400-460 нм).
Клетки микроорганизмов обладают слабой собственной (первичной) люминесценцией. Ее можно усилить предварительным окрашиванием препаратов нетоксическими красителями – флуорохромами (акридин оранжевый, нейтральный красный, аурамин, флуоресцин и др.). В результате возникает вторичная люминесценция. Для ее возбуждения достаточно использовать сине-фиолетовую часть спектра. В результате возникает высококонтрастное цветное изображение рассматриваемого объекта.
Таким образом, при использовании люминесцентной микроскопии разрешающая способность микроскопа возрастает по сравнению со светопольной микроскопией за счет уменьшения длины волны проходящего через объект света.
Электронная микроскопия
Максимальная разрешающая способность оптических микроскопов составляет около 0,2 мкм и зависит от длины волны используемых лучей света. Увеличить разрешение в 100 и более раз можно, если вместо световых или ультрафиолетовых лучей применять поток движущихся электронов, обладающих волновыми свойствами (длина волны около 0,04 нм).
Поток электронов движется в безвоздушном пространстве от источника электронов (раскаленная нить вольфрамовой пушки) по направлению к флуоресцентному экрану и вызывает равномерное свечение его. Если же на пути электронов поместить какой-либо объект, то в зависимости от его плотности электроны будут больше или меньше задерживаться, а соответствующие места на экране окажутся более или менее затемненными. Этот простой принцип работы современного электронного микроскопа дополнен принципом отклонения электронных лучей в магнитном поле подобно тому, как световые лучи отклоняются увеличивающими стеклянными линзами. При этом используются электромагнитные линзы.
Высокая разрешающая способность современных электронных микроскопов позволяет наблюдать и изучать объекты, невидимые в оптических микроскопах: вирусы и фаги, микоплазмы, строение клеток прокариотов и эукариотов, их макро- и микроструктурные элементы. Препараты для электронной микроскопии готовят в виде очень тонких срезов на специальных ультрамикротомах или на тончайших пленках – подложках из коллодия. Следовательно, в электронных микроскопах микроорганизмы исследуют не в живом состоянии, а в виде фиксированных препаратов.
На занятии студенты знакомятся с устройством микроскопа и правилами работы с ним, видами микроскопии, основными особенностями их устройства и принципами их работы. Затем они осваивают технику отбора чистых культур микроорганизмов и методику приготовления фиксированных препаратов бактерий. Готовят фиксированные препараты из чистых культур (Staphylococcus albus, Sarsina flava) и естественных мест обитания (кефира, зубного налета). Далее окрашивают эти препараты простыми методами (чистые культуры и зубной налет – фуксином, а кефир – краской Муромцева) и рассматривают их с использованием иммерсионной системы с объективом х90 или х100 при максимальном освещении.
Для получения фиксированных препаратов важно правильно подготовить предметные стекла. Они должны быть чистыми и тщательно обезжиренными. Для этого стекла, бывшие в употреблении, выдерживают 1-2 часа в хромовой смеси (в 1 л воды вносят 50 г бихромата калия и 100 г технической серной кислоты), после чего ополаскивают теплой водой и спиртом. Можно также кипятить стекла в течение 15 мин. в растворе соды или мыльной воды. Для проверки чистоты стекла на его поверхность наносят каплю воды. При достаточном обезжиривании капля растекается равномерно и не собирается в выпуклые, медленно высыхающие пузырьки. Берут стекла пинцетом или аккуратно за грани, так как пальцы оставляют на поверхности жирные пятна.
Приготовление фиксированных препаратов ведут в следующей последовательности:
Помимо термической обработки, применяют также фиксацию химическими веществами: погружают предметное стекло с мазком в мензурку с 96 %-ным этанолом на 15-20 мин, с ацетоном на 5 мин, со смесью 96 % -ного этанола и 40%-ного формалина (соотношение 95:5) на 2 мин. и др.
Фиксированные препараты нельзя рассмотреть под микроскопом, так как они являются бесцветными и пропускают световые лучи. Поэтому их окрашивают, используя простые или сложные методы.
При окрашивании фиксированных мазков простыми методами используют один краситель (фуксин, краска Муромцева, генцианвиолет, метиленовая синь и др.).
Последовательность окрашивания мазка простыми методами следующая:
Оформление и анализ результатов исследований
В отчете студенты должны кратко законспектировать теоретических материал. Наблюдаемые под микроскопом картины нужно зарисовать и сделать заключение о морфологии исследованных чистых культур, а так же микрофлоры кефира и зубного налета. Под рисунками необходимо указать увеличение и подписать название изучаемого объекта.
Контрольные вопросы
ЛАБОРАТОРНАЯ РАБОТА №3
ДИФФЕРЕНЦИАЛЬНЫЕ МЕТОДЫ ОКРАСКИ БАКТЕРИЙ
При идентификации микроорганизмов учитывают:
Чем больше у различных микроорганизмов общих признаков, тем ближе они находятся друг к другу по степени родства.
Основными признаками, позволяющими распределить микроорганизмы на группы, являются морфологические признаки, которые легко и достаточно быстро можно определить с помощью микроскопа.
При дифференциации бактерий путем микроскопии учитывают размеры и формы клеток, их взаимное расположение, химический состав и строение клеточных стенок, способность образовывать споры и капсулы, подвижность.
Основными формами бактерий, которые присутствуют в пищевом сырье, а также в продуктах растительного и животного происхождения, являются сферические бактерии (кокки) и палочковидные бактерии (палочки).
К основным морфологическим признакам кокков относятся их размеры (диаметр кокков в среднем составляет 1…2 мкм) и взаимное расположение. Взаимное расположение кокков определяется направлением образования перегородок при делении клеток. Если после деления клетки расходятся и располагаются поодиночке, то такие формы называются монококками или микрококками. Если при делении образуются скопления, напоминающие виноградные грозди, их относят к стафилококкам. Кокки, остающиеся после деления в одной плоскости связанными парами, называются диплококками, а образующие разной длины цепочки – стрептококками. Сочетания из четырех кокков, появляющиеся после деления клетки в двух взаимно перпендикулярных плоскостях представляют собой тетракокки. Если кокки делятся в трех взаимно перпендикулярных плоскостях, то они образуют скопления кубической формы - сарцины. Как выглядят различные скопления кокков под микроскопом изображено на рис. 3.
Рис. 3 Взаимные расположения кокков: а - микрококки; б - диплококки;
Палочковидные бактерии могут располагаться поодиночке, попарно (диплобактерии) и цепочками (стрептобактерии).
При микроскопии легко можно определить спорообразующие и не спорообразующие формы палочковидных бактерий. Вегетативные клетки хорошо адсорбируют красители на своей поверхности и полностью окрашиваются. Оболочка споры малопроницаема, краски в них почти не проникают и под микроскопом споры имеют вид округлых или овальных блестящих зерен. Палочки, образующие споры называются бациллами и клостридиями. У бацилл размер споры не превышает ширину клетки и поэтому при образовании споры форма клетки не меняется. У клостридий диаметр споры больше толщины клетки и поэтому при созревании споры клетка приобретает форму веретена (если спора располагается в центре клетки) или барабанной палочки (если спора располагается на одном из полюсов клетки). На рис. 4 представлены морфологические разновидности палочковидных бактерий.
Рис. 4 Морфология палочковидных бактерий: а - диплобактерии;
При использовании дифференциальных (специальных) методов можно окрасить споры, определить наличие в клетках запасных питательных веществ, выявить клеточные структуры.
При окраске спор, например, можно использовать различные методы (методы Шеффера-Фултона, Пешкова, Златогорова, Меллера и др.), основанные на разрыхлении малопроницаемой для красителей оболочки спор различными способами (путем нагревания, обработки препарата кислотами, щелочами) с одновременным или дальнейшим их окрашиванием концентрированным красителем. После такой обработки препарат промывают водой (при этом клетки обесцвечиваются, а споры остаются окрашенными) и докрашивают вегетативные клетки красителем контрастного цвета.
Большое значение с диагностической точки зрения имеет окрашивание капсул. Капсульные вещества слабо окрашивается и при простом методе окраски выступает в виде бледной каймы бесцветного или слабоокрашенного ореола вокруг микробной клетки. Для того чтобы лучше рассмотреть капсулы, используют методы Михина, Муромцева, Ольта, Бурри-Гинса и др. В этих методах используют один или несколько красителей. Так, для окраски капсул по Бурри-Гинсу, суспензию слизеобразуюших бактерий смешивают на краю предметного стекла с каплей туши и с помощью другого предметного стекла распределяют тонким слоем по поверхности. Далее препарат фиксируют над пламенем горелки и окрашивают фуксином или сафранином. При микроскопии такого препарата на темном фоне отчетливо выделяются окрашенные в красный цвет бактерии, окруженные бесцветными капсулами.
С другими специальными методами, позволяющими определить наличие и содержание запасных веществ в клетках (определение гликогена и волютина), студенты ознакомятся при исследовании качества производственных дрожжей (лабораторная работа №6).
На занятии студенты знакомятся с основными признаками, которые учитываются при идентификации микроорганизмов, обращают внимание на морфологические признаки кокков и палочек, диагностическое значение сложных и дифференциальных методов окраски бактерий. Осваивают технику окраски бактерий по методу Грама. Определяют, какие из представленных для исследования бактерии относятся к грамположительным, а какие к грамотрицательным. Готовят фиксированный мазок из чистой культуры спорообразующих бактерий Bacillus subtilis и окрашивают его по Шефферу-Фултону.
Клеточная стенка грам+ бактерий толстая, но однослойная, содержит много пептидогликана – муреина, а также тейховые кислоты, которые образуют прочное соединение с красителями - генцианвиолетом и йодом и поэтому остаются окрашенными после обработки мазка спиртом. Таким образом, грам+ бактерии по методу Грама окрашиваются в сине-фиолетовый цвет.
В отчете студенты кратко конспектируют теоретический материал и переписывают сущность и технику окраски бактерий по Граму и спор бактерий по Шефферу-Фултону. Зарисовывают микроскопические картины исследованных чистых культур бактерий с учетом морфологических особенностей каждого микроорганизма. Под каждым рисунком подписывают латинское название микроорганизма, отношение его к окраске по Граму, увеличение исследованного объекта.
ЛАБОРАТОРНАЯ РАБОТА №4
ПРИЗНАКОВ МИКРОСКОПИЧЕСКИХ ГРИБОВ И ДРОЖЖЕЙ.
ПРИГОТОВЛЕНИЕ ПРЕПАРАТОВ «РАЗДАВЛЕННАЯ КАПЛЯ»
Цель работы: Ознакомиться с морфологическими особенностями грибов и дрожжей, встречающихся при производстве пищевых продуктов. Освоить технику микроскопического исследования грибов и дрожжей в препаратах «раздавленная капля».
Оборудование, материалы: Микроскоп; препаровальные иглы и бактериологические петли; предметные и покровные стекла; фильтровальная бумага; спиртовка; лоток с рельсами для предметных стекол; культуры грибов родов Mucor, Aspergillus, Penicillium, Alternaria; чистая культура дрожжей Saccharomyces cerevisiae.
Микроскопические грибы относятся к надцарству эукариот, царству грибов, отделу истинных грибов и являются представителями трех из четырех классов: фикомицетов, аскомицетов и дейтеромицетов. Представители царства грибов являются аэробными микроорганизмами и по типу питания относятся к хемоорганогеторотрофам. Большинство грибов – сапрофиты, но некоторые вызывают заболевания и являются паразитами.
Вегетативное тело грибов называется мицелием. Мицелий состоит из множества переплетающихся нитей-трубочек, называемых гифами. Диаметр гифов, колеблется от 5 до 50 мкм. В зависимости от строения мицелия грибы делятся на высшие и низшие. У высших грибов гифы разделены перегородками (септами) в центре которых имеется большая пора. В класс фикомицетов объединяются низшие грибы, представители классов аскомицетов и дейтеромицетов являются высшими грибами.
Грибы – это циноцитные микроорганизмы. Это значит, что они растут и при этом происходят деления ядер, но не происходит клеточных делений. Таким образом, вегетативное тело гриба представляет собой одну большую многоядерную клетку.
Все микроскопические грибы могут размножаться вегетативно кусочком мицелия.
При бесполом размножении у фикомицетов образуются спорангиеносцы, а у аскомицетов – конидиеносцы. Дейтеромицеты могут размножаться многоклеточными конидиями.
Фикомицеты и аскомицеты являются совершенными грибами. Это значит, что представители этих классов могут размножаться половым путем. Дейтеромицеты относятся к несовершенным грибам.
Культуральные признаки микроскопических грибов
Колонии микроскопических грибов по размерам во много раз превосходят колонии одноклеточных организмов (бактерий, грибов) и нередко разрастаются по всей поверхности питательной среды в чашках Петри. Консистенция грибных колоний различная. Чаще образуются войлокообразные и кожистые колонии, реже крошковатые. Поверхность колоний может быть пушистой, как вата, бархатистой, мучнистой, паутинообразной, нитевидной, кожистой или гладкой. При росте на плотных и жидких средах часть гифов врастает в питательную среду, образуя субстратный мицелий, а другая часть гифов образует воздушный мицелий в виде пушистого налета, видимого невооруженным глазом. Мицелий может быть также бесцветным (белым, сероватым) или окрашенным (черным, бурым, зеленым, желтым и т.д.). Пигментирован только плодоносящий мицелий.
Морфологические особенности грибов различных классов представлены на рис. 5.
![]() а |
![]() б |
![]() в |
![]() г |
09 10 2014
10 стр.
Ю. 16 Статистика: Учебное пособие. Часть II. – Владивосток: Изд-во вгуэс, 2003-42 с
10 10 2014
7 стр.
Данный практикум включает в себя 9 лабораторных работ по механике и молекулярной физике, отвечающих требованиям Государственного образовательного стандарта и рабочих программ для и
11 09 2014
12 стр.
Общий психологический практикум: Учебное пособие / В. А. Сонин. М.: Форум, 2014. 416 с.: 60x90 1/16. (обложка)
25 09 2014
1 стр.
Хрестоматия по философии: Учебное пособие / Отв ред и сост. А. А. Радугин. – Москва: Центр, 2001.– 416с
15 12 2014
23 стр.
Учебное пособие предназначено для студентов вузов, слушателей бизнес-школ. Будет полезно преподавателям экономических факультетов и руководителям организаций
17 12 2014
32 стр.
Учебное пособие издается по решению Редакционно-издательского совета Санкт-Петербургского государственного университета культуры и искусств
17 12 2014
1 стр.
Учебное пособие предназначено для студентов специальности 271400 «Технология продуктов детского и функционального питания» всех форм обучения
25 09 2014
8 стр.