Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1 ... страница 2страница 3страница 4страница 5страница 6 ... страница 11страница 12

2.2.1. Свойства фактической ошибки эконометрической модели


В данном разделе рассматриваются некоторые подходы к проверке наличия стандартных свойств (2.20)–(2.23) у “истинной” ошибки эконометрической модели t на основе анализа соответствующих свойств фактической ошибки еt.

В этой связи сразу следует отметить, что наличие у ошибки еt каждого из этих свойств не всегда является доказательством присутствия соответствующего свойства и у ошибки t. Иными словами, наличие определенных свойств у ошибки еt не является необходимым условием существования этих свойств и у истинной ошибки t. Дело в том, что некоторые свойства фактической ошибки еt являются своего рода ограничениями на ее значения, которые вытекают из критерия МНК как метода оценки параметров модели, т. е. выполняются практически всегда. В то же время свойства “истинной” ошибки определены теоретическими предпосылками, положенными в основу этой модели. Поэтому вывод о правомочности использования МНК на основе существования таких “априорных” свойств фактической ошибки модели не может считаться обоснованным.

Вместе с тем, если фактическая ошибка t не обладает некоторым свойством, то можно говорить о том, что теоретические предпосылки эконометрической модели не подтверждены полученными эмпирическими данными и “качество” ее уравнения не достаточно высоко.

В этой связи отметим, что к “априорным” свойствам фактической ошибки еt, которые выполняются при использовании МНК всегда, относятся свойства (2.20) и (2.23). Приведем доказательства этого утверждения.

1. Сумма значений фактической ошибки равна нулю

Условие (2.43) является аналогом свойства (2.20), поскольку рассматривается как оценка математического ожидания фактической ошибки.

Использование МНК обеспечивает выполнение условия (2.43) автоматически. В самом деле, дифференцируя сумму квадратов ошибки еt s2 (см. выражение (2.31)) по параметру a0 , получим

Из этого выражения автоматически вытекает, что

2. Произведение транспонированной матрицы Х на вектор фактической ошибки е равно нулевому вектору.
Хе=0. (2.44)
Условие (2.44) является аналогом условия (2.23), поскольку произведение каждой строки матрицы Х на вектор представляет собой скалярное произведение вектора значений соответствующих факторов хit на вектор ошибки.

Тогда векторно-матричное выражение (2.44) можно представить в виде следующей системы скалярных произведений:

где х0t 1 для t=1, 2,..., Т.

Для доказательства справедливости выражения (2.44) представим вектор ошибки е в виде разности фактических и расчетных значений независимой переменной yt



е=у =уХa.
Получим
Хe=Х(уХa)=ХуХХa=(ХХ)1Ху–(ХХ)1 (ХХ)a=0.
Из (2.44) и (2.45) автоматически следует, что

Еще раз отметим, что выполнение условий (2.45) и (2.46) не может считаться доказательством отсутствия корреляционных взаимосвязей между значениями независимых переменных хit и “истинной” ошибкой t. В данном случае эти условия сами являются следствием результатов применения МНК для оценки коэффициентов эконометрической модели, т. е. они как бы выполняются автоматически. Для некоторых классов эконометрических моделей, как это будет показано в главах V и VIII, уже априорно, т. е. до построения модели, можно доказать существование ковариационной связи между некоторыми независимыми переменными и истинной ошибкой модели t. Выполнение условия (2.45) в таком случае не является свидетельством корректности применения “классического” МНК для оценки ее параметров.

3. Из условий (2.43) и (2.45) также вытекает, что сумма произведений отклонений расчетных значений независимых переменных от ее среднего значения и расчетных значений ошибки равна нулю.

Раскрывая скобки в выражении (2.47), непосредственно получим


Выражение (2.47) включает в себя также и следующее условие:

означающее, что сумма произведений расчетных значений зависимой переменной и ошибки еt равна нулю.

Здесь еще раз подчеркнем, что условия (2.43)–(2.48) для фактической ошибки еt эконометрической модели автоматически вытекают из метода оценки ее параметров – МНК, и поэтому их непосредственно нельзя переносить на условия (2.20)–(2.23), характеризующие свойства истинной ошибки t.

Вместе с тем, условия (2.21) и (2.22) для фактической ошибки еt не являются “априорными”. Они выполняются лишь в том случае, если исходные предпосылки МНК оказались справедливыми для данной модели, что является свидетельством обоснованного выбора формы ее уравнения, состава учтенных факторов и т. п.



  1. 2.2.2. Тестирование свойств фактической ошибки эконометрической модели


На практике справедливость предпосылок (2.21) и (2.22) можно подтвердить или опровергнуть только путем анализа свойств фактической ошибки еt, после оценки ее значений. В таком случае фактическая ошибка рассматривается как оценка истинной ошибки и выполнение для нее этих предпосылок может рассматриваться в качестве доказательства их обоснованности, а, следовательно, и достаточно высокого качества оценок параметров эконометрической модели.

Заметим, что условие (2.21) 2 = const нельзя интерпретировать как постоянство значений t для t=1, 2,..., Т. Оно лишь означает, что дисперсия истинной ошибки t является постоянной величиной на любом из отрезков рассматриваемого временного интервала (1,Т). В этой связи проверка условия (2.21) может быть идентична проверке гипотезы о постоянстве дисперсии фактической ошибки еt на различных отрезках интервала (1,Т). Такая проверка обычно проводится с использованием соответствующих тестов.

1. Тестирование условия постоянства дисперсии ошибки модели.

Проверку гипотезы 2=const (выражение (2.21)) можно провести с использованием расчетных значений ошибки еt на основе, например, двустороннего критерия Фишера. Общая схема реализации процедуры такой проверки состоит в следующем. Интервал (1,Т) разбивается на три интервала (1,Т1), (Т1+1, Т2), (Т2+1, Т). При этом первый и третий интервалы обычно выбираются одинаковой длины. В моделях со статической информацией соответственно на три группы разбивается исходная совокупность объектов, которые в данном случае должны быть расположены в порядке возрастания (или убывания) результирующей переменной yt. Для данных, соответствующих первому и третьем интервалам, строятся эконометрические модели, аналогичные исходному варианту. Для каждой из них определяются последовательности ошибки еt е1, е2,..., и еТ соответственно.

Для первого и третьего интервалов на основании известных значений ошибки, рассчитываются дисперсии

1e2=

и

3e2 =



где n – число параметров модели.

Отношение 3e2 / 1e2 сопоставляется с граничными значениями двухстороннего критерия Фишера F* и F* с заданным уровнем доверительной вероятности р* и числом степеней свободы 1=T–(n+1) и 2=TT2–(n+1). Если оказывается, что выполняется соотношение


F* 3e2 /1e2F*, (2.49)
где, то гипотеза о постоянстве дисперсии на интервале (1,Т) принимается. В противном случае – эта гипотеза отвергается.

Напомним, что F* =1/F*(2, 1).

В целом, надежность проверки гипотезы (2.21) по рассмотренной процедуре зависит от правильности выбора числа измерений на каждом из интервалов. С одной стороны, уменьшение их длины приводит к потере точности в оценках 1e2 и 3e2 , с другой – ее увеличение может сделать данные оценки статистически неразличимыми, поскольку колебания квадратов ошибок будут уравновешиваться на расширенных интервалах, и значения их дисперсий с ростом Т сблизятся.

Если количество измерений Т достаточно велико, то для проверки гипотезы о постоянстве дисперсии может быть использован критерий Бартлетта. В этом случае интервал (1,Т) разбивается на k участков. По данным каждого из них формируется собственный вариант эконометрической модели, по форме (т. е. по используемым переменным и характеру их взаимосвязей) тождественный вариантам других участков. Для каждого варианта определяется значение дисперсии ошибки 12, 22,..., k2. Гипотеза постоянства дисперсии предполагает, что 12=22=...=k2=2. Если эта гипотеза верна, то усредненная оценка дисперсий i 2, i=1,2,..., k, рассчитываемая как

распределена как выборочная дисперсия, т. е. по нормальному закону со средним значением 2 и Т степенями свободы, где Т= ni – количество измерений на i-м участке.

Бартлетт показал, что величина


где

распределена примерно по закону 2 с k–1 степенями свободы.

Для частного случая, когда количество измерений на всех участках равны, т. е. n1=n2=...=nk

где с=1+[(k+1)/3kni].

Таким образом, проверка гипотезы о постоянстве дисперсии эконометрической модели на интервале (1,Т) состоит в сопоставлении расчетного значения 2, определяемого по формуле (2.51) или (2.53), с табличным значением этого критерия 2*, взятым при заданной доверительной вероятности р* и k–1 степенях свободы. Если оказывается , что 2=2*, то гипотеза о постоянстве дисперсии принимается, если 2*, то рассматриваемую гипотезу следует отвергнуть.

2. Тестирование автокорреляционной зависимости ошибки.

Проверка выполнимости условия (2.22), свидетельствующего об отсутствии автокорреляционных взаимосвязей в ряду “истинной” ошибки модели t, на практике осуществляется путем тестирования ряда значений фактической ошибки et.

При этом предполагается, как и в случае тестирования условия (2.21), что свойства фактической ошибки в значительной степени соответствуют свойствам ее теоретического аналога. В данном случае имеется в виду характер автокорреляционных взаимосвязей между значениями ошибок в моменты времени t и t–1, t и t–2 и т. д.

Обычно у случайного процесса (если отсутствуют сезонные эффекты) наиболее существенны взаимосвязи между соседними значениями. Это выражается в том, что абсолютное значение его первого коэффициента автокорреляции превосходит аналогичные значения его коэффициентов автокорреляции более высоких порядков. Вследствие этого проверка выполнимости условия (2.22) часто рассматривается как проверка гипотезы о значимости именно первого коэффициента автокорреляции фактической ошибки. Один из таких тестов (по критерию Дарбина-Уотсона) был рассмотрен в разделе (1.4). Этот тест не отличается значительной достоверностью. Область существования его значений содержит достаточно обширную зону неопределенности, в случае попадания расчетного значения критерия Дарбина-Уотсона в которую нельзя сделать однозначный, статистически обоснованный вывод о наличии или отсутствии автокорреляционной связи у рассматриваемого процесса. Вместе с тем математическая статистика разработала большое количество значительно более мощных тестов, которые могут быть использованы в этих целях. Многие из них рассмотрены в главах VI и VII при тестировании свойств временных рядов.

В данном разделе рассмотрены проблемы тестирования наличия или отсутствия автокорреляционных связей путем проверки гипотезы о значимости непосредственно расчетного значения первого коэффициента автокорреляции фактической ошибки et. На первый взгляд, это – наиболее очевидный и прямой путь при проверке гипотезы о наличии автокорреляционной связи в ряду ошибки et. Однако на этом пути исследователю приходится сталкиваться с достаточно сложными проблемами. Дело в том, что закон распределения выборочного коэффициента корреляции по форме достаточно сложен и зависит от абсолютного значения r* и числа измерений Т. При r 0 плотность распределения f(r) симметрична, но с ростом абсолютного значения этого коэффициента она становится резко асимметричной, особенно при небольших значениях Т. Вследствие этого традиционные тесты проверки значимости параметров, использующие предположение о “нормальности” закона распределения их ошибок, в данной ситуации следует применять с определенной осторожностью, особенно в малых по объему выборках.

На практике проверку значимости выборочного коэффициента автокорреляции ошибки r1 можно провести двумя способами. Во-первых, можно пренебречь погрешностями, обусловленными отличием закона распределения выборочного коэффициента автокорреляции от нормального, тем более, что при r10 они не столь значительны. Тогда процедура проверки значимости этого коэффициента сводится к сопоставлению расчетного значения его критерия Стьюдента

с его табличным значением * (р*, Т–2), взятым при заданном уровне доверительной вероятности р* и известном числе степеней свободы Т–2. В выражении (2.54) характеризует среднеквадратическую ошибку выборочного коэффициента корреляции, величину которой приблизительно можно определить на основании следующего выражения:

Если окажется, что r*, то первый коэффициент автокорреляции временного ряда фактической ошибки et можно принять равным нулю, и в этом случае ее автокорреляционные взаимосвязи можно считать статистически несущественными.

Второй способ оценки значимости коэффициента r1 с точки зрения математической статистики является более строгим. При его проведении вместо выборочной оценки коэффициента автокорреляции r1 используется его преобразование

Фишер показал, что величина z1 распределена приблизительно по нормальному закону с нулевым средним практически при любых значениях r11 даже при не слишком большой выборке. Вследствие этого расчетное значение критерия Стьюдента, используемое при проверке гипотезы о независимости рядов еt и еt+1, может быть определено по формуле – среднеквадратическая ошибка переменной z1. В практических расчетах ее можно заменить оценкой, полученной из выражения (2.55).



  1. <предыдущая страница | следующая страница>


Эконометрика ұғымы. Эконометриканың білімінің басқа салаларымен байланысы

«Эконометрика» сөзі «экономика» және «метрика» (гректің «метрон» деген сөзінен шыққан). Бұл термин эконометриканың мазмұның ғылым ретінде қабылдайды

33.45kb.

13 09 2014
1 стр.


Учебно-методический комплекс по дисциплине эконометрика специальность 080801. 65 Прикладная информатика (в экономике)

Эконометрика позволяет найти количественное подтверждение либо опровержение того или иного экономического закона либо гипотезы. Одним из важнейших направлений эконометрики является

252.14kb.

18 12 2014
1 стр.


Программа дисциплины Финансовая эконометрика для направления 080100. 62 «Экономика» подготовки бакалавра

Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления 080100. 62 специальности «Экономика» подготовки бакалавра, изучаю

178.23kb.

18 12 2014
1 стр.


Эконометрика
3280.07kb.

17 12 2014
12 стр.


Учебно-методический комплекс учебной дисциплины «Эконометрика» (ЕН. Ф. 04) по специальности 080105 «финансы и кредит»
606.5kb.

18 12 2014
3 стр.


Программа дисциплины Эконометрика-2 для специальности 080100. 68

«Математические и статистические математической экономики и методы в экономике» эконометрики

184.56kb.

06 10 2014
1 стр.


Алексей петрович горяев

Финансовая эконометрика, взаимные и хедж-фонды, развивающиеся финансовые рынки, риск-менеджмент

43.91kb.

14 09 2014
1 стр.


История эконометрики Глава Этимология слова «эконометрика»

Создание эконометрического общества и институционализация эконометрического знания

152.11kb.

17 12 2014
1 стр.