Flatik.ru

Перейти на главную страницу

Поиск по ключевым словам:

страница 1 ... страница 8страница 9страница 10страница 11страница 12страница 13страница 14
ГЛАВА 9
ОТДЕЛЬНЫЕ КЛАССЫ ДИСПЕРСНЫХ СИСТЕМ
В настоящем разделе главное внимание будет уделено описанию свойств тех дисперсных систем, которые применяются в фармации в качестве лекарственных форм, а также имеют существенное значение для смежных областей, в первую очередь для медицины и биологии, и в особенности, биохимии.
9.1. Суспензии и пасты
Суспензии  это грубодисперсные системы с твёрдой дисперсной фазой и жидкой дисперсионной средой (тип Т/Ж). В зависимости от дисперсности твёрдой фазы суспензии подразделяют на грубые (диаметр частиц более 100 мкм или 104 м), тонкие (от 100 до 0,5 мкм или 104  0,5106 м) и мути или взвеси (от 0,5 мкм до 100 нм или 0,5106  107 м). Вследствие того, что размеры частиц в суспензиях сравнительно велики, они, как правило, седиментационно неустойчивы. Мути (взвеси), размеры частиц которых близки к коллоидным, седиментируют, но очень медленно. Седиментация суспензий может сильно замедляться при близких значениях плотностей дисперсионной среды и дисперсной фазы.

Из всех дисперсных систем суспензии имеют наибольшее значение для химической и фармацевтической технологии. Так, при производстве удобрений, катализаторов, красителей, строительных материалов, алмазного и твёрдосплавного инструмента, в керамическом производстве, в пищевой промышленности и т. д. используются реагенты в виде суспензий. С ними имеют дело при осаждении солей, их растворении, при выщелачивании, фильтрации. Суспензию образует измельчённый твёрдый катализатор, если каталитическая реакция проходит в жидкой фазе. Суспензиями являются буровые промывочные жидкости, масляные, акварельные и гуашевые краски, тушь. В виде суспензий употребляются многие пищевые продукты, например, молотый кофе, какао, фруктовые и овощные соки.



Пасты – это высококонцентрированные суспензии, в которых объёмная концентрация частиц сравнима или даже превышает концентрацию дисперсионной среды. В пастах частицы дисперсной фазы прилегают друг к другу, что создаёт повышенную вязкость и часто приводит к структурированию при длительном стоянии. Пасты тоже имеют большое значение во всех отраслях химической и фармацевтической промышленности, в строительном деле, в быту и т. д. Примерами паст являются ил на дне водоёмов, цементный и известковый растворы, паста строительного гипса («алебастра»). Всем известны зубная паста, чистящие и полирующие средства в виде паст. К ним можно отнести и такие пищевые продукты, как томат-паста, кетчупы, столовая горчица, а также мучное тесто (само слово «паста» по-итальянски означает «тесто»). Применяются пасты и в косметике – это губная помада, тени для век и т. п.

В аптечной практике также довольно часто приходится встречаться с суспензиями и пастами. В форме суспензий прописывают лекарства, предназначенные для внутреннего употребления (так называемые "микстуры-суспензии”) или некоторые носовые капли. Цемент для пломбирования зубов, а также сульфат бария при рентгеноскопии пищевода и желудка приготовляются в виде паст.

Суспензии имеют ряд общих свойств с порошками, т. к. эти системы подобны по дисперсности и генетически связаны друг с другом: если порошок поместить в жидкость и размешать, то получится суспензия, а при выпаривании она снова может превратиться в порошок. Другие способы, которык можно использовать для получения суспензий описаны ранее (см. п. 4.2).

Суспензии имеют много общего и с лиофобными золями. Так, на поверхности их частиц существует двойной электрический слой, в них наблюдаются электрокинетические явления, броуновское движение. Но вместе с тем из-за больших размеров частиц суспензии обладают и рядом отличительных свойств: они седиментационно неустойчивы, их частицы не способны к диффузии, в них практически не наблюдаются осмос и опалесценция. Наиболее часто встречающимся оптическим эффектом в суспензиях является мутность.

В химической и фармацевтической практике особенное значение имеет агрегативная устойчивость суспензий, позволяющая после оседания частиц вновь перевести их в объём дисперсионной среды более или менее интенсивным встряхиванием. Из-за непосредственного контакта частиц в осадке агрегативная устойчивость лучше всего может быть обеспечена введением в систему поверхностно-активных веществ  как низкомолекулярных мицеллообразующих, так и высокомолекулярных ("защитных коллоидов"). Адсорбция таких высокоэффективных стабилизаторов приводит к возникновению на поверхности частиц структурно-механического барьера, полностью предотвращающего коагуляцию. Роль такого барьера особенно велика при стабилизации "обратных" систем  суспензий полярных веществ в неполярных средах. Полное предотвращение сцепления частиц благодаря образованию защитного слоя ПАВ может происходить и в концентрированных суспензиях  пастах, пульпах, шламах и т. п. В этих случаях ПАВ служит пластификатором, обеспечивающим текучесть системы. Подбор ПАВ для стабилизации суспензий сходен с выбором их для стабилизации эмульсий.

Иногда введение ПАВ может приводить не к увеличению устойчивости системы, а, наоборот, к уменьшению её. Особенно это характерно для некоторых высокомолекулярных ПАВ  флокулянтов, используемых для увеличения скорости осаждения суспензий и золей различной природы. Молекулы высокомолекулярных флокулянтов могут закрепляться сразу на двух и более частицах, образуя мостики между ними. Образование флокул  рыхлых хло­пьев в агрегативно неустойчивых суспензиях является одной из форм структурообразования. Оно наиболее характерно для систем с анизометрическими частицами. Сцепление частиц при флокуляции может быть использовано для закрепления грунтов во избежание оползней, для управления структурообразованием почв и т. д.

Если в какой-либо системе имеются нежелательные суспензионные частицы, их можно отделить фильтрованием.
9.2. Эмульсии
Эмульсии  это дисперсные системы с жидкой дисперсионной средой и жидкой дисперсной фазой (тип Ж/Ж).

Примерами природных эмульсий могут служить молоко (а также получаемые из него сливки и сметана), млечный сок растений, растительные масла, сырая нефть, битумы. Кровь человека и животных тоже в первом приближении можно рассматривать как эмульсию, в которой форменные элементы крови – эритроциты, лейкоциты и др., - состоящие из полужидкой цитоплазмы, играют роль капель дисперсной фазы. Искусственным путём получаются промышленные латексы, окрасочные эмульсии, консистентные смазки. К эмульсиям относятся многие косметические кремы, мази, парфюмерные средства и др., а также целый ряд лекарственных форм. В форме эмульсий удаётся облегчить приём вязких масел, смягчить раздражающее действие на слизистую оболочку желудка некоторых лекарственных средств, облегчить дозирование, а также замаскировать неприятный вкус эфирных масел. В ряде случаев при применении лекарственных средств в виде эмульсий можно улучшить терапевтический эффект. Особенно ценны эмульсии в детской фармакотерапии.

Получают эмульсии как конденсационными, так и диспергационными методами, но чаще применяют диспергирование (механическое или ультразвуковое). Ранее говорилось, что общим условием образования дисперсных систем является практически полная или частичная нерастворимость вещества дисперсной фазы в среде. Поэтому жид­кости, образующие различные фазы в эмульсиях, должны сильно различаться по полярности. В связи с этим различают два основных типа эмульсий  прямые, с каплями неполярной жидкости в полярной среде, и обратные, с каплями полярной жидкости в неполярной среде. Наибольшее распространение имеют эмульсии, в которых одна из фаз  вода. В этих случаях вторую фазу образует неполярная или малополярная жидкость, называемая в общем случае маслом (например, растительные масла, а также бензол, хлороформ, и т. п.). Поэтому прямые эмульсии часто называют эмульсиями типа "масло в воде" (М/В), а обратные  типа "вода в масле" (В/М). В общем случае словом "вода" обозначается более полярная жидкость, а словом "масло" - менее полярная, даже если они имеют отличную от воды и масла природу. Так, например, эмульсия ртути в бензоле относится к типу В/М.

В зависимости от объёмной концентрации дисперсной фазы эмульсии подразделяют на три класса: разбавленные (концентрация не превышает 0,1%), концентрированные (0,1  74%) и высококонцентрированные или желатинированные ( 74%), которые по структуре близки к пенам.

Разбавленные эмульсии относительно устойчивы, поскольку вероятность столкновения частиц при малой частичной концентрации невелика. Однако столкновение капелек, не защищённых стабилизатором, заканчивается их слиянием (коалесценцией). Во многих отношениях поведение разбавленных эмульсий с мелкими каплями близко к поведению лиофобных золей (разрушение при введении электролитов подчиняется правилу Шульце  Гарди, многозарядные ионы вызывают перезарядку, в устойчивых эмульсиях наблюдается заметный электрофорез и т. п.).

В промышленности, в быту, а также в качестве лекарственных форм чаще всего используются концентрированные и желатинированные эмульсии. Подавляющее большинство применяемых на практике эмульсий относятся к классу концентрированных, хотя объёмная концентрация дисперсной фазы может в них колебаться в очень широких пределах. Такие эмульсии не могут существовать без стабилизации, так как близко находящиеся друг к другу капли будут часто сталкиваться и коалесцировать, что быстро приведёт к полному расслоению.

Граница между двумя классами концентрированных и высококонцентрированных эмульсий определяется тем, что капли дисперсной фазы могут сохранять сферическую форму вплоть до объёмной доли, соответствующей плотной упаковке шаров (74%). Поэтому дальнейшее увеличение концентрации, характерное для высококонцентрированных эмульсий, неизбежно связано с деформацией капель, приводящей к появлению новых свойств.

Высококонцентрированные эмульсии готовят при интенсивном механическом воздействии посредством постепенного введения малых объёмов вещества дисперсной фазы в дисперсионную среду, содержащую эффективный эмульгатор, например, желатин. Такие эмульсии представляют собой желеподобные системы, которые обладают даже некоторой упругостью и прочностью (иногда их можно резать ножом). Твёрдообразные свойства таким эмульсиям придаёт ориентированное расположение сольватированных молекул эмульгатора в системе прослоек дисперсионной среды. Эти тонкие прослойки образуют пространственный каркас, ячейки которого заполнены жидкостью дисперсной фазы.

Разрушение эмульсий, как и других дисперсных систем, происходит различными путями, из которых в практическом отношении наиболее важны седиментация и коалесценция. Седиментация в эмульсиях, в особенности типа М/В, как правило, проявляется во всплывании частиц дисперсной фазы (например, образование сливок при стоянии молока). Во многих случаях она сопровождается флокуляцией, т. е. собиранием капелек в гроздья, хлопья и т. п. Всплывшие на поверхность капли соприкасаются друг с другом и при определённых условиях могут сливаться, т. е. коалесцировать.

Коалесценция является следствием нарушения агрегативной устойчивости и заключается в полном слиянии капелек. Более крупные капли, возникающие при слиянии, в соответствии с законом Стокса всплывают быстрее, что приводит к нарушению и седиментационной устойчивости. В отличие от флокуляции коалесценция необратима. Таким образом, оба вида устойчивости в эмульсиях тесно связаны и взаимно обусловлены. Их нарушение в итоге может привести к полному расслаиванию – разделению эмульсии на два жидких слоя. Поэтому агрегативно устойчивые эмульсии могут быть получены только с применением эффективных стабилизаторов, называемых в данном случае эмульгаторами. В качестве эмульгаторов обычно используются поверхностно-активные вещества (ПАВ) различной природы. Однако возможен ещё один способ стабилизации эмульсий - введением тонкодисперсных порошков, размеры частиц которых намного меньше размеров капель (в десятки и сотни раз).

Устойчивость эмульсий характеризуют двумя величинами – 1) временем полного расслаивания столба эмульсии на два слоя или 2) временем жизни (до коалесценции) приведённых в соприкосновение капель дисперсной фазы. В этом случае устойчивость определяется при рассматривании эмульсии под микроскопом.

Тип эмульсии, возникающей при механическом диспергировании, в значительной степени зависит от соотношения объёмов жидкостей: жидкость, присутствующая в существенно большем количестве, обычно становится дисперсионной средой. Если объёмное содержание двух жидкостей примерно равно, то, как отмечалось Ребиндером, при диспергировании обыч­но образуются одновременно эмульсии обоих типов  прямая и обратная. Но после прекращения диспергирования при отстаивании выживает из них та, которая имеет более высокую устойчивость к коалесценции капель и последующему расслаиванию. При этом соотношение стабильности прямой и обратной эмульсий, а, следовательно, и тип эмульсии определяются природой введённого стабилизатора (эмульгатора).

Способность поверхностно-активного эмульгатора обеспечивать устойчивость эмульсии того или другого типа определяется энергией взаимодействия его молекул с полярной и неполярной жидкостями. Это отражается в так называемом правиле Банкрофта:

при эмульгировании дисперсионной средой становится та жидкость, в которой эмульгатор лучше растворим.

В соответствии с этим правилом эмульгаторы с большими числами ГЛБ (гидрофильно-липофильного баланса), такие как, например, олеат натрия или лаурилсульфат натрия, способствуют образованию прямых эмульсий. Наоборот, эмульгаторы с малыми числами ГЛБ (например, олеат кальция, олеиновая кислота)  стабилизируют обратные эмульсии. По-видимому, в механизме стабилизации эмульсий наиболее существенным является наличие адсорбционно-сольватного фактора агрегативной устойчивости. При этом наиболее плотной и обеспечивающей наибольшее расклинивающее давление будет такая структура адсорбционного слоя, при которой бóльшая часть молекулы (или сольватированного иона) эмульгатора будет находиться на внешней поверхности капель.

Это подтверждается и способностью к стабилизации эмульсий тонкодисперсными порошками. При этом порошковые эмульгаторы тоже подчиняются правилу Банкрофта, а именно, защищают от коалесценции капли той жидкости, которая хуже смачивает их частицы, тогда как лучше смачивающая жидкость становится дисперсионной средой. Так, при стабилизации эмульсии, состоящей из капель воды в масляной среде, сажей, частицы сажи размещаются на поверхности капель таким образом, что бóльшая их часть оказывается погружённой в масло. Из-за худшего смачивания вода оттесняется из прослоек между частицами сажи, в результате чего при столкновении капли воды не могут прийти в непосредственный контакт. Соприкасаются только частицы сажи, образующие достаточно прочную оболочку вокруг капель, в результате чего происходит взаимное отталкивание капель воды. И, наоборот, гидрофильный порошок, например, мел, защищает подобной "бронёй" капли масляной фазы в водной дисперсионной среде в эмульсиях противоположного типа. Стабилизация эмульсий порошками может рассматриваться в качестве простейшего и очень наглядного примера структурно-механического барьера как фактора стабилизации дисперсий.

Другим важным фактором агрегативной устойчивости эмульсий является образование двойного электрического слоя на поверхности капель в результате стабилизации ионогенными ПАВ. Следует только подчеркнуть, что этот фактор является наиболее действенным в случае эмульсий типа М/В, где полярные ионогенные группы эмульгатора при адсорбции оказываются на внешней поверхности капель. При этом сталкивающиеся капли в первую очередь испытывают взаимное отталкивание одноимённо заряженных противоионов. ДЭС, характеризующийся значительным электрокинетическим потенциалом, таким образом, является существенным дополнением к структурно-механическому барьеру. Если же эмульсия относится к типу В/М, то ДЭС формируется на внутренней поверхности капель и его роль в отталкивании частиц будет намного меньше, так как электрические силы проявляются на малых расстояниях.

Замена эмульгатора или изменение его природы в результате химических реакций может привести к обращению фаз эмульсии, особенно если объёмное соотношение её фаз близко к 1:1. Например, если к эмульсии оливкового масла в воде (М/В), стабилизированный стеаратом натрия, добавить раствор хлорида кальция, то эмульгатор переходит в кальциевую форму:

2 C17H35COONa + CaCl2 = (C17H35COO)2Ca + 2 NaCl.

Возникший стеарат кальция содержит два больших углеводородных радикала, которые с двух сторон экранируют полярный центр, состоящий из иона Са2+, соединённого с двумя карбоксильными группами. Такое кальциевое мыло значительно лучше растворимо в масле, чем в воде. В результате при интенсивном встряхивании эмульсия обращается, т. е. масляная фаза становится дисперсионной средой, а водная – дисперсной фазой.

Аналогичное обращение фаз происходит при сбивании масла из сливок. При этом структурно-механический барьер на каплях эмульсии, состоящий, главным образом, из белка казеина, разрушается в результате интенсивного механического воздействия. Капли масла сливаются, но при этом захватывают мелкие капельки воды (с растворёнными в ней веществами), ранее бывшей дисперсионной средой молока. Поэтому отделённое от сыворотки и спрессованное сливочное масло всегда содержит множество капель воды, т. е. по существу является эмульсией типа В/М.



На практике, в том числе и в фармацевтической технологии, часто возникает необходимость определения типа образовавшейся эмульсии. Так, в лечебных целях для внутреннего применения используются эмульсии типа М/В. В виде наружных средств могут применяться эмульсии обоих типов, как М/В, так и В/М. Однако при приготовлении эмульсий следует контролировать тип образующейся эмульсии, так как всегда имеется некоторая вероятность того, что полученная эмульсия будет принадлежать к другому типу. Это может произойти в результате даже небольших ошибок в дозировке эмульгатора и каждой из жидких фаз, в результате обращения фаз при слишком интенсивном встряхивании при получении и др. Для определения типа эмульсий существует несколько способов, принцип которых изложен ниже.

Метод окрашивания. К небольшому количеству эмульсии добавляется водо- или жирорастворимый краситель. После перемешивания капля эмульсии рассматривается под микроскопом. По тому, какая фаза  капельки дисперсной фазы или среда  окрашивается данным красителем, делается вывод о типе. Например, если был использован жирорастворимый краситель суданIII, и под микроскопом видно, что он окрасил в красный цвет капли дисперсной фазы, а дисперсионная среда при этом осталась бесцветной, значит, мы имеем дело с эмульсией типа "масло в воде".

Метод смачивания гидрофобной поверхности осуществляется нанесением капли исследуемой эмульсии на поверхность парафинированной пластины. С парафином при этом соприкасается дисперсионная среда эмульсии, которая ведёт себя соответственно сродству к нему. А именно, эмульсии типа В/М при этом или полностью растекаются по поверхности, или образуют с ней острый краевой угол смачивания, а эмульсии типа М/В не растекаются и образуют тупой или близкий к прямому краевой угол. Таким образом, рассматривая каплю в плоскости пластинки, можно по краевому углу смачивания сделать заключение о типе эмульсии.

Метод разбавления водой. На чистой стеклянной пластинке рядом с каплей исследуемой эмульсии помещается капля дистиллированной воды так, чтобы обе капли пришли в соприкосновение. Эмульсии типа М/В легко смешиваются с водой, так как вода имеет одинаковую природу с дисперсионной средой. При соприкосновении капель воды и прямой эмульсии они быстро сливаются в одну, и происходит разбавление эмульсии. Капля обратной эмульсии долго сохраняет поверхность раздела с каплей воды, так как её неполярная среда не смешивается с водой.

Метод электрической проводимости. Эмульсии типа В/М в отличие от прямых практически не проводят электрический ток, так как он может распространяться только по непрерывной дисперсионной среде. Значит, измеряя электрическую проводимость или сопротивление эмульсии, можно сделать заключение о её типе.
9.3. Пены
Пены  ячеистые дисперсные системы, образованные скоплением пузырьков газа или пара, разделённых тонкими прослойками жидкости. Они относятся к типу Г/Ж. В отличие от газовых эмульсий пены  структурированные связнодисперсные системы. В большинстве случаев пены очень полидисперсны. Размеры газовых пузырей в них колеблются от долей миллиметров до нескольких сантиметров, благодаря чему пены занимают промежуточное положение между микрогетерогенными и макрогетерогенными системами.

Примерами пен являются пожаротушащие пены, пены, образуемые флотореагентами при обогащении руд ценных металлов, а также мыльная пена (или пена, образованная раствором любого другого моющего средства), Флотация грязевых частиц пузырьками пены является одним из важнейших компонентов моющего действия детергентов. Пены используются в ряде косметических средств, например, пена для бритья, пенки для масок, некоторые кремы и др.

Многие пищевые продукты являются пенами, как, например, взбитые сливки, муссы, суфле, кондитерские кремы. При варке варенья на нём образуется пена, стабилизированная растительными белками. Эти белки являются основным объектом питания микроорганизмов, вызывающих гниение, поэтому удаление пенки необходимо для длительного сохранения варенья. Аналогичная пена часто наблюдается при варке мясных бульонов. В этом случае она образована низкомолекулярными растворимыми белками, полипептидами или аминокислотами. Пены образуются и на многих напитках, содержащих поверхностно-активные вещества – на кофе, какао, пиве и т. п.

Применение в качестве пенообразователей полимеризующихся веществ – уретана, стирола и др. - приводит после полимеризации к полному отвердеванию дисперсионной среды. Таким способом получают пенопласты, поролоны, пенорезины, пенобетоны, обладающие высокими прочностными, тепло и звукоизоляционными свойствами. Однако эти системы представляют собой самостоятельный класс дисперсных систем – твёрдые пены, относящиеся к типу Г/Т. Рассматриваемые в данном разделе жидкие пены являются промежуточным продуктом при получении твёрдых пен.

В фармации некоторые лекарственные средства применяются в виде пен, например, противоожоговые и ранозаживляющие средства кислородные коктейли.

Пены получают при интенсивном перемешивании или при барботировании пузырьков газа через жидкость. Важнейшим условием их получения является присутствие стабилизатора, называемого пенообразователем. В отсутствие пенообразователя пены с водной дисперсионной средой или вообще не образуются, или очень быстро разрушаются.

В качестве пенообразователей используются те же поверхностно-активные вещества, которые являются эмульгаторами эмульсий типа М/В, так как дисперсная фаза в пенах – воздух или, реже, другие газы, - принципи­ально гидрофобна. Стабилизация гликозидами (сапонин), таннинами, красителями и высокомолекулярными соединениями, особенно белковой природы, ведёт к образованию высоковязких и прочных пространственных структур в поверхностном слое пузырьков, сильно замедляющих утончение и разрыв пленки. Стабилизаторы этого типа называются по предложению Ребиндера сильными пенообразователями.

Кроме того, устойчивость пен определяется и другими свойствами системы, например, вязкостью жидкости.

Кинетическая устойчивость пен является их важной практической характеристикой. Обычно она определяется временем самопроизвольного разрушения столба пены на половине его высоты.

Ещё одной характеристикой пены является её кратность , выражаемая отношением объёма пены к объёму исходного раствора пенообразователя Vж:



,

где Vг – суммарный объём пузырьков газа, Vг + Vж – объём пены.

Для «влажных» пен, состоящих из сферических пузырьков газа, разделённых сравнительно толстыми прослойками,  10, для «сухих» пен с тонкими прослойками может достигать  1000. В сухих пенах, где коэффициент заполнения пространства пузырьками воздуха превышает 74%, пузырьки деформируются и представляют собой не сферы, а полиэдрические ячейки. Эти ячейки разделяются стенками, состоящими из тонких прослоек жидкости с адсорбированными на них молекулами пенообразователя.

В пределе можно получить достаточно крупные пузырьки с настолько тонкими стенками, что они состоят фактически из двух упорядоченных слоёв молекул поверхностно-активного вещества, между которыми находится мономолекулярный слой воды. Из-за одинакового давления воздуха в соседних пузырьках эти плёнки являются идеально плоскими. Это очень удобно для изучения строения адсорбционных слоёв ПАВ, для экспериментального определения размеров их молекул и т. п. Подобные тонкие слои, называемые «чёрными» плёнками из-за практически полного отсутствия отражения света, могут быть получены и при создании больших мыльных пузырей. В этом случае стенки пузыря при отсутствии движения воздуха являются идеально сферическими. Тонкостенные мыльные пузыри, сохраняющиеся в течение нескольких минут, а иногда и часов, тоже являются удобным объектом для изучения свойств молекул ПАВ.

Часто образование пен является нежелательным, например. В химических аппаратах при перемешивании жидкой реакционной смеси. Аналогично нежелательная пена может возникать при перемешивании или встряхивании лекарственных растворов и т. д. В стиральных машинах из-за интенсивного перемешивания раствор детергента может практически весь превратиться в пену, что не даст проявляться главному механизму моющего действия – солюбилизации грязевых частиц. Кроме того, избыточная пена заполняет всё пространство над раствором, что мешает в работе. Для предотвращения образования ненужной пены применяют специальные вещества – пеногасители. Пеногасителями являются воски, жиры, некоторые масла, эфиры, высшие спирты и др., добавляемые в перемешиваемую жидкость. Уничтожить или хотя бы уменьшить уже образовавшуюся пену можно механическим удалением, термическим («пережигание») или ультразвуковым воздействием.
9.4. Аэрозоли
Аэрозоли  дисперсные системы, состоящие из мелких частиц, взвешенных в воздухе или другом газе.

Аэрозоли играют исключительно важную роль в метеорологии (атмосферные явления), в геологии (образование и разрушение почв из пыли, переносимой ветром  лёссовых почв, выветривание горных пород), в сельском хозяйстве (искусственное дождевание, борьба с вредителями), в экологии (проблемы очистки воздушной среды от загрязнений, как естественных – в результате пыльных бурь, извержений вулканов, - так и антропогенных), в авиации, а также во многих других областях деятельности.

В медицине аэрозоли используются для аэрозольной терапии, которая имеет ряд преимуществ перед традиционными формами применения лекарств. Главное из них заключается в высокой дисперсности и легкой подвижности частиц дисперсной фазы  факторов, значительно повышающих фармакологическую активность лекарств. К ним относятся средства для лечения простудных и других заболеваний дыхательных путей, симптоматические средства, облегчающие приступы бронхиальной астмы, эмфиземы легких и т. п.

Согласно принятой классификации аэрозоли подразделяют на следующие классы:






Обозначение

Размеры частиц, м

Туманы

Ж/Г

0,1106  10106

Дым (конденсационные аэрозоли)

Т/Г

0,001106  10106

Пыль (диспергационные аэрозоли)

Т/Г

10106

Туманы имеют жидкие частицы сферической формы, тогда как твёрдые частицы пылей и дымов могут иметь самые различные формы. Искусственно получаемые аэрозоли с жидкими частицами иногда называют английским термином «спрей». Часто, особенно вблизи промышленных предприятий – химических заводов, тепловых электростанций и др., - в воздухе образуется аэрозоль, содержащий одновременно и твёрдые, и жидкие частицы – смог (от англ. smoke – дым и fog – туман).

Подобно многим дисперсным системам, аэрозоли могут образовываться как путём конденсации, так и путём диспергирования.

Конденсационное образование аэрозолей является основным природным и техническим процессом образования высокодисперсных систем. В первую очередь следует упомянуть возникновение таких атмосферных аэрозолей, как туман и облака. Главным механизмом их образования является физическая конденсация водяного пара в результате пересыщения, которое происходит при значительном охлаждении воздуха. К природным конденсационным аэрозолям относятся и высокодисперсные дымы от лесных пожаров и от извержений вулканов. Следует помнить, что в чистом виде природные конденсационные дымы получаются редко, так как в большинстве случаев они находятся в смеси с пылями, образующимися при диспергировании различных веществ – горных пород, золы и т. п. Антропогенными конденсационными аэрозолями являются промышленные дымы, автомобильные, тракторные и др. выхлопы, дымы от костров и пожаров и др.

Аэрозоли, образующиеся в процессах диспергирования, как правило, имеют сравнительно крупные частицы и обладают большей полидисперсностью, чем аэрозоли, образующиеся в процессах конденсации. Тем не менее, диспергационные методы получения аэрозолей, в особенности с жидкими частицами, используются достаточно широко. Это, например, разбрызгивание форсунками, распылителями и пульверизаторами жидкого топлива, ядохимикатов, лаков и красок, парфюмерных и косметических средств, лекарственных веществ в ингаляториях и т. п. Примером аэрозоля, образующегося природным распылением, может служить тончайшая водяная пыль, стоящая над водопадами, или возникающая при разбивании морских волн о берег, а также при уносе ветром брызг с гребней штормовых волн. Капли этой пыли при этом из-за испарения быстро теряют воду и в результате в морском воздухе присутствует аэрозоль с твёрдыми частичками морской соли. Именно этот аэрозоль придаёт целебные свойства приморским местностям. Аналогичный солевой аэрозоль имеется в воздухе соляных копей. По этой причине во многих местах мира в соляных шахтах устраиваются подземные санатории для лечения лёгочных заболеваний. Диспергационные аэрозоли могут возникать и как побочный продукт различных процессов, например, истирания дорожных покрытий и шин автомобилей, дробления твёрдых материалов, пересыпания порошков. Сюда же можно отнести пыли, образующиеся при военных и мирных взрывах, пожарах и т. п.

В настоящее время в большинстве областей народного хозяйства, в том числе и в медицине, широко используются специальные устройства для быстрого приготовления аэрозолей  аэрозольные упаковки (баллоны).

Аэрозольная упаковка состоит из баллона (металлического, стеклянного или пластмассового), клапана, сифонной трубки и распылительной головки, поверх которой обычно надевается предохранительный колпачок. Клапаны бывают постоянного действия и дозирующие; распылительные головки могут давать крупно- или мелкокапельные аэрозоли, а также пены. Баллон заполняется жидкой смесью, содержащей активные вещества (применительно к фармации  лекарственные), вспомогательные вещества и растворители. Вспомогательные вещества помогают получать распылённые смеси в виде аэрозоля, пены, плёнки и др. Как правило, это ПАВ различной природы. Кроме этой смеси в баллон под давлением закачиваются газыраспылители (пропелленты).

В качестве пропеллентов применяются азот, N2O, СО2, легко сжижающиеся углеводороды, например, пропан и бутан и др. Длительное время во всём мире в подавляющее большинство аэрозольных баллонов в качестве пропеллентов вводились фреоны (хладоны).



Фреоны  это полностью или частично фторированные газообразные или жидкие производные углеводородов, часто содержащие также атомы Сl, реже Br. Они негорючи, взрывобезопасны, химически мало активны, практически безопасны для здоровья. Применяемый в каждой данной упаковке фреон обозначается шифром, представляющим собой трёхзначное число, соответствующее его брутто-формуле. Если первая цифра равна нулю, её обычно опускают. В этом шифре 1-я слева цифра  число атомов углерода минус 1; 2-я  число атомов водорода плюс 1; 3-я  число атомов фтора. Если фреон содержит атомы Cl, то их наличие в формуле не отражается, но при написании химической формулы оставшиеся свободными связи «насыщаются» хлором. Например, дифтордихлорметан CF2Cl2 называется фреоном12, тетрафтордихлорэтан C2F4Cl2  фреоном-114. Названия циклических фреонов включают букву С, например, перфторциклобутан C4F8  фреон-С318. Для получения медицинских аэрозолей наиболее часто применялись фреоны 11, 12, 114.

Фреоны являются хорошими пропеллентами, дающими очень тонкодисперсные аэрозоли. К тому же из-за лёгкости сжижения они очень технологичны. Однако из-за возможного разрушающего действия на озоновый слой атмосферы принята международная конвенция, запрещающая их применение. Поэтому принимаются меры для постепенного перехода от фреонов к другим, менее вредным для атмосферы пропеллентам.

Газовая дисперсионная среда вносит ряд своеобразных черт в свойства аэрозолей. Прежде всего, это их принципиальная лиофобность и отсутствие эффективных путей стабилизации. На поверхности аэрозольных частиц не образуется двойной электрический слой, служащий одним из главных факторов устойчивости в лиозолях. Поэтому аэрозоли агрегативно неустойчивы. Коагуляции или коалесценции в них препятствует, главным образом, малая частичная концентрация, а также энтропийный фактор и рассеяние частиц в пространстве воздушными потоками. При больших концентрациях, как, например. В дождевых облаках, капли тумана из-за частых столкновений коалесцируют, что приводят к пролитию дождя.

Вследствие большой разницы в плотностях дисперсной фазы и газовой среды аэрозоли седиментационно неустойчивы. Однако и в этом случае воздушные потоки – ветер, сквозняки, - препятствуют оседанию частиц или вновь поднимают в воздух уже осевшие пылевые частицы. В неподвижном воздухе оседание пылей происходит достаточно быстро. Самые мелкие, ультрамикрогетерогенные, частицы дымов из-за броуновского движения не оседают, и длительное время находятся в воздухе, пока не встретятся с какой-либо твёрдой либо жидкой поверхностью или не скоагулируют при столкновении с другой частицей.

В различных областях практической деятельности задача управления устойчивостью аэрозолей стоит очень остро. В одних случаях необходимо поддерживать стабильность аэрозольных систем, в других требуется обеспечить их эффективное разрушение. Например, необходимо разрушать (осаждать) тонкие, зависающие в воздухе пыли, образование которых почти всегда сопутствует процессу дробления, размола, пересыпания твёрдых материалов. Нередко такие аэрозоли представляют значительную опасность для здоровья людей, так как, проникая в лёгкие, вызывают лёгочные (силикоз, антракоз) и аллергические заболевания. Это относится и к лекарственному аэрозолю, возникающему в воздухе аптек при развешивании и фасовке порошков. Многие органические вещества, находящиеся в состоянии высокодисперсных аэрозолей, оказываются взрывоопасными, поскольку горение мгновенно захватывает огромную поверхность и сопровождается резким увеличением объёма. В частности, в аэрозольном состоянии становятся взрывоопасными даже такие обычные вещества, как мука, сахар, угольная пыль, пылевидные отходы обработки полимерных материалов, лекарственные вещества и т. п.

Значительное увеличение количества техногенных аэрозолей может заметно изменить условия образования облаков и за счёт этого  климат планеты. Содержащиеся в промышленных и выхлопных дымах оксиды серы и азота при попадании в облака образуют соответствующие кислоты, что приводят к выпадению так называемых кислотных дождей. Эти дожди являются причиной закисления почв и вод в озёрах и других водоёмах, болезней и гибели растений и животных как наземных, так и обитающих в воде. Отрицательно сказываются эти дымы и на здоровье человека, в особенности в крупных промышленных городах, где в воздухе постоянно висит более или менее концентрированный смог. Ещё одна область, где смог и кислотные дожди приносят большой, часто невосполнимый вред – это коррозия металлов и строительных материалов, от скорости которой зависит сохранность жилых и промышленных зданий, мостов и в особенности памятников архитектуры и скульптуры. За последние 100 – 150 лет состояние последних ухудшилось больше, чем за сотни и тысячи лет, прошедшие со времени их создания.

Концентрация аэрозолей в атмосфере увеличивается и после крупных извержений вулканов. Так, при катастрофическом извержении вулкана Кракатау в Индонезии в 1883 г. в атмосферу было выброшено около 18 км3 твёрдых частиц всех размеров, наиболее мелкие из которых оставались во взвешенном состоянии более года. Вызванное этим потемнение атмосферы привело к тому, что в течение нескольких лет на всей Земле наблюдалось заметное похолодание, увеличилось число гроз и др. Аналогичные явления наблюдались в конце 1970-х гг. после извержения мексиканского вулкана Эль Чичон и после поджога нефтяных промыслов в Кувейте во время «войны в Заливе».

Большинство методов разрушения аэрозолей связано с интенсификацией процессов коагуляции, коалесценции и прилипания их частиц к различным поверхностям, а также процессов седиментации (путем изменения скорости и направления потока аэрозоля при инерционном осаждении в аппаратах типа «циклон»). Увлажнение воздуха в помещениях, например, с помощью декоративных фонтанчиков или пульверизаторов приводит к ускоренному слипанию аэрозольных и пылевых частиц с последующим выпадением в осадок. Аналогичный эффект наблюдается в атмосфере после дождя, когда воздух бывает наиболее чистым. Эффективным способом управления устойчивостью атмосферных аэрозолей является распыление в них концентрированных растворов гигроскопических веществ (например, CaCl2) или твёрдых частиц (СO2, КJ). Вызванная этим конденсация водяного пара и рост капелек воды приводят к выпадению осадков. Очистка воздуха в помещениях производится обычно его увлажнением.

Аэрозоли обладают радом свойств, которые не наблюдаются в других дисперсных системах. К ним относятся термофорез, термопреципитация и фотофорез, а также особые электрические свойства.

Термофорез  движение частиц в поле температурного градиента, например, вблизи сильно нагретого металлического стержня или другого предмета. Причиной термофореза в случае крупных частиц является поток воздуха, обтекающий и закручивающий частицу, а в случае мелких  разность числа импульсов молекул, падающих на горячую и холодную сторону частицы, т. е. увеличение интенсивности броуновского движения. В результате термофореза частицы аэрозолей движутся в сторону от нагретого предмета и накапливаются в холодных участках системы, где может происходить их оседание на холодных поверхностях - термопреципитация.

Фотофорез  перемещение аэрозольных частиц под действием света. Различают положительный (движение от источника света) и отрицательный (движение к источнику света) фотофорез. Причины его во многом неясны, но есть предположение, что фотофорез вызывается неравномерным нагревом поверхности частиц, обусловленным различными прозрачностью, коэффициентом преломления и т. п. Возможно также местное нагревание задней стенки прозрачной частицы лучами, испытывающими полное внутреннее отражение.

Как уже упоминалось, двойной электрический слой на поверхности аэрозольных частиц не образуется. Однако вследствие адсорбции ионов из воздуха или электризации при трении о него частицы могут приобрести электрический заряд. В отличие от лиозолей он является случайной величиной и поэтому частицы одинаковых размеров и одного состава могут иметь различные по величине и даже по знаку заряды, к тому же изменяющиеся во времени, и характеризовать электрическое состояние частиц аэрозолей можно только статистическими методами. Заряд частиц обычно весьма мал и составляет всего несколько элементарных зарядов. Это обстоятельство позволило Р. Милликену в начале века измерить заряд электрона в опыте по седиментации капель масляного аэрозоля в вертикальном электрическом поле.

В электрическом поле аэрозоли способны к электрофорезу, что используется для разрушения их в электрофильтрах Коттрелла, действующих по принципу электрофореза. Частицам дыма иди тумана в постоянном электрическом поле высокого напряжения сообщается заряд при адсорбции на них ионов (обычно отрицательных), возникающих в коронном разряде. Приобретшие заряд частицы движутся к аноду, которым обычно является стенка электрофильтра, и разряжаются на нём, после чего осыпаются или стекают в специальный приёмник.

Явления, связанные с электрическими свойствами атмосферных аэрозолей, являются причиной грозовых явлений, а также помех в работе различных радиоустройств. При адсорбции ионов из воздуха капельки тумана в облаках приобретают заряд, который из-за большого числа капель и неравномерности распределения зарядов создаёт электрические поля напряжённостью до 100 В/см и более. В результате происходит пробой изолирующего слоя атмосферы между отдельными частями грозового облака или между облаком и землёй – молния. В сильно запылённых помещениях, например, в плохо проветриваемых шахтах или на мельницах возможна электризация угольных или мучных пылинок, которая усиливается трением этих диэлектрических частиц о воздух. Проскакивание искры в таких помещениях может явиться причиной взрыва.


9.5. Порошки
Порошками называют материалы, состоящие из множества индивидуальных твёрдых частиц, размер которых не превышает нескольких сотен ми­кро­метров. Как и дымы, и пыли они относятся к типу Т/Г. В разных отраслях промышленности максимальный размер частиц, соответствующий понятию «порошок» оценивают по-разному. В химической промышленности его обычно принимают равным 100 мкм (100106 м); по требованиям Государственной Фармакопеи порошки, применяемые в качестве лекарственных форм, не должны содержать частиц, различимых в общей массе невооруженным глазом (без указания конкретных размеров).

Порошки  древнейшая лекарственная форма, известная уже около 5000 лет и не утратившая значения да нашего времени.

Получают порошки главным образом диспергационными методами – растиранием в ступках, измельчением в шаровых и коллоидных мельницах и др. Они генетически связаны с рядом других дисперсных систем различных классов. Так, при смешении порошков с жидкостями получаются суспензии, при пересыпании многие порошки пылят с образованием аэрозолей, при прессовании или спекании они дают пористые тела (аэрогели).

Для практического применения порошков большое значение имеет их дисперсность, от которой зависят вкусовые свойства пищевых продуктов (мука, сахар, кофе, какао), цвет и яркость красок, получаемых из порошкообразных пигментов, свойства абразивных материалов и т. д. В фармации от дисперсности порошков во многом зависят растворимость и усваивание лекарств, прочность таблеток и др. Дисперсность определяют микроскопически, а также методами ситового или седиментационного анализа.

Важной технологической характеристикой порошков является сыпучесть, определяющая их способность к пересыпанию, ручному и механическому дозированию, а также в значительной степени к таблетированию. Сыпучесть определяется числом и конфигурацией контактов между частицами. Число точек контактов может изменяться в зависимости от характера и плотности упаковки частиц. Для сферических частиц оно не превышает двенадцати, для частиц другой формы может колебаться в значительных пределах, особенно в полидисперсных порошках.. Относительная поверхность контактов, а значит и их прочность увеличивается с ростом дисперсности, что значительно уменьшает как сыпучесть, так и удельную поверхность порошков. При адсорбции на гидрофильных порошках влаги прочность контактов между частицами возрастает, что ухудшает сыпучесть.

С сыпучестью тесно связана распыляемость, являющаяся в общем, нежелательным качеством, т. к. при распылении происходят значительные потери материала, а также образуются пыли и аэрозоли, часто вредные для здоровья. Однако в некоторых случаях хорошая сыпучесть и распыляемость необходимы, например, при ингаляции сухих лекарств для профилактики гриппа. Распыляемость порошка определяется силами оцепления между частицами, гидрофильностью или гидрофобностью. Гидрофобные порошки (например, тальк, сажа) распыляются лучше гидрофильных (кварц, известняк, мел, глина). Кроме того, распыляемость в значительной мере зависит ещё и от размеров частиц. В общем, чем меньше частицы, тем она лучше. Но эта зависимость не является линейной. У каждого порошка существует свой критический радиус частиц, ниже которого распыление практически прекращается. Порошки из мягких, пластичных материалов распыляются хуже, чем из твёрдых; монодисперсные порошки распыляются лучше полидисперсных.

Гидрофильные порошки с очень мелкими частицами при достаточно длительном хранении могут слёживаться. Причина слёживания заключается в том, что контакты между частицами становятся очень прочными, так что энергии кинетического движения при пересыпании недостаточно для их разрушения. Если же порошки в результате адсорбции и капиллярной конденсации поглотили из воздуха значительное количество влаги, то поверхностные слои частиц могут частично раствориться в капиллярной воде, что при частичном высыхании приведёт к срастанию частиц. Влажность способствует слёживанию даже нерастворимых в воде порошков, так как капиллярная вода достаточно прочно удерживает частицы друг около друга. Слежавшиеся порошки трудно или вообще невозможно использовать. Например, не удастся правильно вносить минеральные удобрения, трудно или вообще невозможно будет дозировать лекарства при приготовлении сложных порошков и т. п.

Ещё одним важным свойством порошков является их абразивность – способность к истиранию поверхностей, к которым они прикасаются при пересыпании, дозировании, взвешивании или при практическом использовании. Если порошки используются в качестве абразивных материалов, например, для резки, шлифования и полировки металлов, облицовочных материалов и т. д., то они должны быть изготовлены из твёрдых и притом достаточно хрупких веществ, чтобы их частицы («зёрна») обладали достаточно острыми краями. В других случаях, в частности при изготовлении зубных паст и бытовых чистящих средств, авразивность должна быть невысокой, чтобы не повредить эмальзубов или поверхность посуды, кухонного и сантехнического оборудования и др.

Порошки характеризуются насыпной плотностью, которая показывает, какая масса порошка умещается в единице объёма, например, в кубическом метре. Насыпная плотность порошков, даже изготовленных из одного и того же материала, может значительно отличаться, главным образом, из-за степени дисперсности, формы частиц, моно- илри полидисперсности.

В целях уменьшения потерь порошкообразных материалов при транспортировке, пересыпании, расфасовке и т. п., порошки подвергают гранулированию (сухому и с увлажнением). Обычно гранулирование порошков проводят методом агломерации (окатывания) в аппаратах барабанного типа или в виброгрануляторах. При этом в барабан вместе с порошком вводят «зародыши» (гранулы малого диаметра), что особенно важно при сухом гранулировании. Если частицы порошка плохо слипаются друг с другом, в барабан вводится небольшое количество жидкости (смачивателя), необходимое для обеспечения достаточного сцепления частиц в гранулах, но не слишком большое, иначе порошок превратится в пасту или суспензию. Гранулированные порошки меньше распыляются и меньше слёживаются. Гранулы, как правило, являются не очень прочными образованиями и при растирании или небольшом давлении снова переходят в порошок.


iiI. В Ы С О К О М О Л Е К У Л Я Р Н Ы Е В Е Щ Е С Т В А

И И Х Р А С Т В О Р Ы
ГЛАВА 10
ВЫСОКОМОЛЕКУЛЯРНЫЕ ВЕЩЕСТВА
Высокомолекулярные вещества (ВМВ) характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Хотя под это определение попадают многие неорганические соединения в кристаллическом состоянии и минералы, (например, NaCI, SiO2, графит, алмаз и т. д.), обычно термином BMB обозначаются органические соединения. Неорганические ВМВ выделяются в особую группу, и в нашем курсе рассматриваться не будут.

Большинство органических высокомолекулярных соединений  полимеры, молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок, или мономерных звеньев, соединённых между собой химическими связями.


10.1. Классификация высокомолекулярных веществ
По происхождению полимеры делят на природные или биополимеры (например, белки, полисахариды, нуклеиновые кислоты, каучуки) и синтетические, получаемые полимеризацией или поликонденсацией. Кроме того, есть особая группа полусинтетическихискусственных») ВМВ, получаемых химической обработкой природных (например, нитроцеллюлоза, ацетилцеллюлоза).

По строению макромолекул ВМВ подразделяют на линейные полимеры, макромолекулы которых представляют собой длинную нитевидную цепь (например, целлюлоза, полиэтилен, поливинилхлорид, полипропилен), разветвлённые, имеющие цепи с разветвлениями (например, крахмал, гликоген) и пространственные, макромолекулы которых, соединяясь, друг с другом, образуют трёхмерную пространственную структуру. Среди пространственных выделяют сетчатые полимеры (например, полистирол), у которых фрагменты макромолекул, образующие пространственные ячейки, приблизительно равны, и сшитые, в структуре которых макромолекулы соединены друг с другом короткими мостиковыми связями. Такие мостики обычно состоят всего из нескольких атомов, зачастую из двух или трёх, причём эти атомы могут быть и не углеродными, а, например, атомами серы (как в резине) и др.

По химическому составу различают гомополимеры, содержащие одинаковые мономерные звенья (например, полиэтилен, полипропилен, полиметилметакрилат) и сополимеры, макромолекулы которых получаются при соединении двух или более различных мономеров (например, фенолоформальдегидные смолы, белки, нуклеиновые кислоты). Полимеры, содержащие в главной цепи макромолекулы одинаковые атомы, называются гомоцепными (например, полиэтилен, полипропилен), а содержащие разные атомы  гетероцепными (например, белки, полисахариды, полиамиды, полиэфиры). Среди гомоцепных наиболее распространены карбоцепные полимеры, главная цепь которых содержит только атомы углерода.

Полимеры, макромолекулы которых построены из звеньев одинаковой пространственной конфигурации, или из звеньев различной конфигурации, но чередующихся в цепи с определённой периодичностью, называются стереорегулярными. Полимеры с произвольным чередованием звеньев различной пространственной конфигурации, называются нестереорегулярными или атактическими.

По взаимному расположению макромолекул выделяют аморфные и кристаллические ВМВ. Большинство полимеров являются аморфными, что определяется хаотическим расположением макромолекул в твёрдом образце. В кристаллических полимерах отдельные макромолекулы или их сегменты могут быть расположены по отношению друг к другу упорядоченно. Такие участки с упорядоченной структурой носят название кристаллитов. Следует отметить, что кристаллиты никогда не занимают всего объёма образца ВМВ. Они более или менее густо вкраплены в общую аморфную массу, и поэтому правильнее говорить не о кристаллических полимерах, а о полимерах с большей или меньшей кристаллитной составляющей.

Возможны и другие подходы к классификации высокомолекулярных веществ, о которых подробнее говорится в курсе органической химии или химии полимеров.


10.2. Получение, применение и свойства высокомолекулярных

веществ
Природные ВМВ выделяют из растительного или животного сырья соответствующими методами, после чего при необходимости подвергают очистке и фракционированию. Синтетические ВМВ получают с применением двух основных типов реакций – полимеризации и поликонденсации. При поликонденсации в результате отщепления от молекул мономеров концевых групп атомов в качестве побочного продукта образуется какое-либо низкомолекулярное вещество, чаще всего вода. При полимеризации образование мак­ро­молекул идёт за счёт раскрытия кратных (двойных или тройных) связей в мономерах и побочных продуктов не образуется. Более подробно о полимеризации и поликонденсации, а также о методах получения полусинтетических полимеров говорится в курсах органической химии или химии высокомолекулярных веществ.

Полимеры применяются практически в любых отраслях промышленности, в быту, а также в медицине и фармации. Это вызвано такими их свойствами, как механическая прочность в сочетании с лёгкостью, широкий спектр реологических характеристик – от эластичности до твёрдости или пластичности, тепло- и электроизоляционные, оптические и другие свойства, полимеров. Полимеры служат основой пластмасс, химических волокон, резин, используемых для производства конструкционных материалов и упаковочных материалов, мебели, посуды, одежды, обуви, декоративных изделий и т. п. Без них не обходится производство лакокрасочных материалов, герметиков, клеев, а также ионообменных смол. Такие биополимеры, как белки, полисахариды, нуклеиновые кислоты составляют основу всех живых организмов, а природный («натуральный») каучук незаменим для получения наиболее высококачественных резин.

В медицине и фармации природные и синтетические полимеры используют для изготовления медицинской техники (инструменты, предметы ухода за больными, материалы и изделия для упаковки лекарств), для изготовления функциональных узлов аппаратов (например, аппаратов искусственного кровообращения, мембран диализаторов – «искусственных почек»), а также перевязочного материала (бинтов, ваты, асептических повязок, масок и т. п.). В хирургии ВМВ применяются для замены поражённых или утраченных органов (при протезировании, при косметической хирургии), в качестве шовного материала и клеев для бесшовного соединения рассечённых тканей.

Некоторые полимеры, чаще всего белковой природы, используются в качестве лекарств, стабилизаторов и пролонгаторов лекарственных веществ, кровезаменителей. Большое значение имеют полимеры и в качестве вспомогательных веществ для создания основ паст, мазей, пластырей (полиэтиленоксид, поливиниловый спирт, поливинилпирролидон, производные целлюлозы, циклодекстрин и др.). Используют ВМВ и для изготовления оболочек капсул и покрытий таблеток.

Линейные полимеры обладают специфическими свойствами, в частности, способностью к образованию волокон и мягких плёнок (ацетилцеллюлоза, капрон, нейлон), а также к необратимым (пластическим) или к большим обратимым (эластическим) деформациям (каучук, белки). По мере перехода от линейных полимеров к разветвлённым и пространственным эти свойства становятся менее выраженными. Так, из большинства разветвлённых синтетических полимеров невозможно изготовлять волокна, а полученные из них плёнки, как правило, жёстки и упруги. Хотя в случае сильно искривлённых макромолекул даже сшитые полимеры продолжают оставаться эластичными, например, резина. Но по мере увеличения числа мостиков, соединяющих две соседние макромолекулы, эластичность резин уменьшается и, в конце концов, они переходят в эбониты, не обладающие эластичностью. Пространственные ВМВ, как сшитые с большим числом межмолекулярных мостиков, так и сетчатые, тверды и часто хрупки (например, полистирол, полиметилметакрилат), и из них не удаётся изготовить волокон и тонких плёнок.
10.3. Фазовые и физические состояния полимеров
Из-за больших размеров макромолекул ВМВ давление пара над ними ничтожно мало. Поэтому температура разложения органических полимеров намного ниже температуры их кипения. Вследствие этого ВМВ могут существовать только в двух агрегатных состояниях  твёрдом и жидком. Причём сетчатые ВМВ после полимеризации и образования пространственного каркаса практически не могут быть расплавлены без разложения, так что жидкое состояние характерно, главным образом, для линейных и разветвлённых ВМВ.

В твёрдом состоянии полимеры не могут быть получены в чисто кристаллическом состоянии и всегда содержат ту или иную долю аморфной фракции. Как правило, эта доля не бывает меньше половины, так что о кристаллическом состоянии ВМВ можно говорить лишь условно.

Известно, что по сравнению с кристаллическим состоянием аморфное тело обладает бóльшими объёмом и энтропией. Устойчивое состояние аморфных тел  жидкость, все твёрдые аморфные тела метастабильны и могут рассматриваться как переохлаждённые жидкости. Поэтому и расплавленные, и даже физически твёрдые ВМВ следует рассматривать как существующие в одной жидкой фазе.

Характерный признак аморфных тел  плавление и отвердевание не при фиксированной температуре, а в некотором температурном интервале. В аморфном состоянии ВМВ обладают изотропией, то есть их макроскопические свойства – твёрдость, поверхностное натяжение, коэффициент преломления и др. в отсутствие внешних воздействий не зависят от направления.

В случае высокомолекулярных веществ с линейной и разветвлённой структурой кроме фазовых следует различать ещё и три физические состояния. Эти состояния отличаются друг от друга характером теплового движения макромолекул, что проявляется во внешних свойствах. При низких температурах ВМВ находятся в стеклообразном состоянии, для которого характерно отсутствие перемещения относительно друг друга как макромолекул в целом, так и их сегментов. Внешне, на макроуровне это состояние проявляется в виде твёрдости и хрупкости. В таком стеклообразном состоянии эксплуатируются органические стекла и пластмассы, в том числе ионообменные смолы.

При нагревании аморфные полимеры переходят в высокоэластическое состояние, в котором "размораживается" движение отдельных сегментов макромолекул. Это состояние наступает тогда, когда полимер нагревается выше так называемой температуры стеклования Tg. Строго говоря, температура стеклования это не какая-то строго фиксированная величина, а интервал температуры, часто довольно значительный. Для высокоэластического состояния характерна способность образцов полимеров к гибкости и к растяжению, т. е. к огромным (порядка 1000%) обратимым поперечным и продольным деформациям. Высокоэластическое состояние наиболее характерно для полимеров с сильно искривлёнными гибкими макромолекулами и обусловлено их способностью под нагрузкой изменять конформацию от свёрнутой до практически распрямлённой. В высокоэластическом состоянии эксплуатируются резины, каучуки и другие эластомеры. При охлаждении ниже температуры стеклования эластичные полимеры переходят в стеклообразное состояние.

Высокоэластическое состояние сохраняется у ВМВ в достаточно широком интервале температур, вплоть до так называемой температуры текучести Tf, выше которой они переходят в вязко-текучее состояние. Как и Tg температура текучести представляет собой довольно широкий интервал. В вязко-текучем состоянии могут перемещаться относительно друг друга как отдельные сегменты, так и макромолекулы целиком. При механических нагрузках у полимеров, находящихся в этом состоянии, развиваются преимущественно необратимые деформации (пластичность, вязкая текучесть). При охлаждении ниже температуры текучести ВМВ могут вновь вернуться в высокоэластическое состояние. Во многих случаях, особенно когда ВМВ состоит из относительно коротких макромолекул, Tf отождествляется с температурой плавления. Но это не всегда так и полимеры с длинными, сильно разветвлёнными и перепутанными между собой макромолекулами, в вязко-текучем состоянии внешне могут выглядеть как достаточно твёрдые тела, наподобие битумов и асфальтов.

Значение температуры стеклования и температуры текучести, а также интервал между ними зависят от длины макромолекул, их гибкости, которая связана с наличием или отсутствием двойных связей, ответвлений (даже коротких, например, метильных групп) и т. п. Полимеры с сетчатой структурой существуют преимущественно в стеклообразном состоянии и часто не имеют даже температуры плавления, так как их деструкция происходит при намного более низких температурах.

Каждый класс полимеров должен обладать температурами стеклования и текучести, соответствующим условиям его эксплуатации. Так, у резин и других эластомеров Tg должна быть достаточно низкой, а Tfнаоборот, высокой, чтобы они не становились хрупкими при охлаждении или не пластифицировались при нагревании. Пластмассы, из которых, например, изготовлены детали механизмов, штативы и т. п., наоборот, должны обладать высокими Tg, чтобы не стать эластичными при нагревании.
10.4. Набухание
Взаимодействуя с растворителями при соприкосновении, полимер может поглощать их, иногда в очень значительных количествах, что приводит к увеличению его объёма. Это увеличение объёма (а одновременно и массы) полимерного образца в результате поглощения низкомолекулярной жидкости или её пара называется набуханием. Во многих случаях набухание происходит практически без изменения формы образца. Взаимодействие полимеров с растворителями имеет большое значение при их применении, переработке, в биологических процессах и др. Например, белки и полисахариды в живых организмах находятся в набухшем состоянии и, более того, только в нём могут осуществлять процессы, связанные с жизнедеятельностью. Так, семена растений могут прорасти только в набухшем состоянии. Старение организмов сопровождается уменьшением способности биополимеров к набуханию.

Набухание  явление, характерное именно для ВМВ, так как у низкомолекулярных соединений оно или вообще отсутствует, или наблюдается в незначительной степени, как, например, в глинах.

Количественной характеристикой набухания служит степень набухания , определяемая как объём (масса) жидкости, поглощённой единицей объёма (массы) полимера на данной стадии набухания при данной температуре:

или ,

где m0 и m  масса образца полимера соответственно до и после набухания;



V0 и V  объём образца полимера до и после набухания.

Степень набухания может достигать очень больших величин, так как многие ВМВ набухают очень сильно Примером может служить набухание крахмала в зёрнах при приготовлении каш, когда стакан крупы, например, гречневой, поглощает трёх- или четырёхкратный объём воды и в результате получается очень большой объём каши.

Степень набухания изменяется во времени, что может быть выражено изотермами набухания, в схематическом виде представленными на рис. 10.1.




<предыдущая страница | следующая страница>


Курс лекций по физической и коллоидной химии. Часть II коллоидная химия. Для студентов фармацевтических вузов

Председатель проф. Е. Н. Вергейчик, проф. В. Г. Беликов, проф. В. И. По­го­ре­лов, проф. Ю. Г. Пшуков, проф. М. Д. Гаевый, проф. Д. А. Муравьева, доц. В. В. Га­цан, доц. Б. И. Литв

2913.43kb.

10 09 2014
14 стр.


Курс лекций для студентов юридических вузов и факультетов). (п)

Криминалистика: Курс лекций / Е. Р. Россинская; Московская государственная юридическая академия. М.: Норма: инфра-м, 2010. 384 с.: 60x90 1/16

48.31kb.

14 12 2014
1 стр.


Курс лекций по экологии для студентов гуманитарных специальностей

Радаев А. А. Краткий курс лекций по экологии для студентов гуманитарных специальностей Часть I правовое регулирование природопользования

219.64kb.

14 12 2014
1 стр.


Закономерности влияния химической структуры карбо- и гетероциклических жидкокристаллических соединений на их физико-химические свойства 02. 00. 03 Органическая химия

Работа выполнена на кафедре физической и коллоидной химии Российского государственного университета нефти и газа имени И. М. Губкина

477.23kb.

10 10 2014
4 стр.


Физическая химия

Предмет физической химии. Значение физической химии для фармации, медицины и биологии. Физико-химические методы исследования и анализа, используемые в фармации

97.09kb.

30 09 2014
1 стр.


Вопросы для подготовки к экзамену по физической и коллоидной химии

Укажите температуру, для которой в справочниках приводятся стандартные термодинамические величины

489.26kb.

13 10 2014
3 стр.


Курс лекций по фармакологии (учебное пособие для отечественных и иностранных студентов): в 2 ч. Часть 2-е изд., перераб и доп. Симферополь, 1998. 100 с

Бекетов А. И. Курс лекций по фармакологии (учебное пособие для отечественных и иностранных студентов): в 2 ч. Часть – 2-е изд., перераб и доп. – Симферополь, 1998. – 100 с

1739.7kb.

15 09 2014
10 стр.


Конспект лекций по общей химии для студентов 1 курса Санкт-Петербург 2004 План лекций № п/п

Основными классами неорганических соединений являются оксиды, кислоты, соли и основания

796.91kb.

10 10 2014
4 стр.