Урок 1: Шар
Цели: ввести представление о шаре, радиусе шара, диаметре шара, о сфере; закрепить знание учащимися формул длины окружности и площади круга; способствовать выработке навыков решения задач.
Ход урока
I. Актуализация опорных знаний учащихся.
1. Решить № 878 (а; в) устно.
2. Решить № 882.
3. Повторить формулы длины окружности, площади круга.
4. Решить задачу:
Диаметр опаленной площади тайги от взрыва Тунгусского метеорита (1908 г.) равен примерно 38 км. Какая площадь тайги пострадала от метеорита?
II. Объяснение нового материала.
1. «Родственником» круга в пространстве является шар. Футбольный мяч, глобус, арбуз дают представление о шаре. Подобно тому как круг ограничен окружностью, так же шар ограничен шаровой поверхностью, которая иначе называется сферой. Все точки шаровой поверхности одинаково удалены от центра шара.
2. Отрезок, соединяющий точку поверхности шара с центром, называют радиусом шара.
3. Отрезок, соединяющий две точки поверхности шара и проходящий через центр шара, называют диаметром шара. Диаметр шара равен двум радиусам.
4. Вы знаете, что наша Земля имеет шарообразную форму, но она несколько сплюснута, поэтому полярный радиус на 21 км меньше экваториального и длина экватора на 67 156 м больше длины меридиана.
5. Представьте себе, что у вас есть деревянный шар и вы распиливаете его.
В плоскости распила получается фигура, она называется сечением шара.
Всякое сечение шара плоскостью есть круг, а сферу плоскость пересекает по окружности.
Чем дальше проходит секущая плоскость от центра сферы, тем меньше радиус сечения. Самые большие окружности получаются при сечении сферы плоскостями, проходящими через центр. В этом случае радиус окружности является и радиусом сферы.
III. Закрепление изученного материала.
1. Назвать предметы, имеющие форму шара.
2. Можно ли поместить в куб с ребром 7 см шар радиусом 4 см?
3. Решить задачу № 874 на доске и в тетрадях.
4. Решить задачу № 877.
Решение.
1) 5000 · 2,48 = 12400 (км) диаметр планеты Венера.
2) 12400 · = 400 · 17 = 6800 (км) диаметр планеты Марс.
Ответ: 12400 км; 6800 км.
5. Повторение ранее изученного материала:
а) Решить задачу № 879.
Решение.
М 1 : 1000. Значит, 1 см на плане составляет 1000 см = 10 м на местности. Поэтому радиус бассейна равен 10 м, а диаметр бассейна – 20 м. Площадь бассейна равна
S =
r2 = 3,14 · 10
2 = 3,14 · 100 = 314 (м
2).
Ответ: 20 м; 314 м2.
б) Решить задачу № 883.
Решение.
(см
2) площадь первого круга.
(см) радиус второго круга.
3) · 62 = 3,14 · 36 = 113,04 (см2) площадь второго круга.
Ответ: 150,72 см2; 113,04 см2.
в) Решить № 885 (1) самостоятельно.
IV. Итог урока.
1. Что называется радиусом шара? диаметром шара?
2. Что такое сфера?
3. Формулы длины окружности и площади круга.
Домашнее задание: изучить п. 25; решить № 861, 887, 888, 890 (а).