Перейти на главную страницу
Иногда на практике возникает необходимость в построении фигуры сечения не на проекциях детали, а отдельно на чертеже, на- пример с целью определения истинной величины этой фигуры. Если при этом секущая плоскость наклонена к плоскостям проекций, сечение называют наклонным
Пример наклонного сечения детали дан на рис 6.11 Как видно из чертежа, фигура сечения детали фронтально-проецирующей пло- скостью состоит из прямоугольника (результат пересечения наруж- ной поверхности детали — многогранника) и эллипса (результат пересечения плоскостью цилиндрического отверстия). Кроме того, в плоскость сечения попали прямоугольный вырез, идущий вдоль основания детали, два цилиндрических отверстия, из них одно сквозное, и вырез в верхней части детали. Цилиндрические отверстия изображаются в форме прямоугольников, так как секущая плоскость направлена вдоль образующих этих поверхностей.
Истинная величина фигуры сечения определена способом замены плоскостей проекций. Ось проекций новой системы на чертеже не по
86
казана. Поскольку полученная фигура сечения симметрична, в подстроении ее использована ось симметрии. На чертеже эту ось лучше располагать параллельно следу секущей плоскости. Тогда все размеры, выражающие длину фигуры сечения (I) и ее частей, могут быть непосредственно с помощью линий проекционной связи перенесены с фронтальной проекции на указанную ось. Размеры, относящиеся к ширине фигуры сечения (/; и др.), взяты с горизонтальной проекции.
Фигуру сечения детали можно размещать и не в проекционной связи с фронтальной проекцией, в том числе и с ее поворотом.
Рис 6.11
В основе алгоритма решения любой метрической задачи лежит свойство плоской фигуры, параллельной плоскости проекций: она (фигура) проецируется на эту плоскость в конгруентную фигуру;
фаФаФ.
В задачах на построение проекций угла, равного 90°, используется теорема о частном случае проецирования прямого угла: прямой угол проецируется ортогонально без искажения, если одна из его сторон параллельна плоскости проекции, а вторая сторона не перпендикулярна к этой плоскости:
Рис 7.1
Решение задачи сводится к перемещению плоскости общего положения, которой принадлежит угол, в положение, параллельное какой- либо плоскости проекции. Такое перемещение можно осуществить с помощью методов преобразования ортогональных проекций.
Наиболее рациональный путь решения задачи по переводу плоскости угла в положение, параллельное плоскости проекции, достигается путем вращения плоскости угла вокруг линии уровня.
В этом случае для получения ответа на поставленную задачу достаточно произвести поворот только одной точки вокруг горизонтали или фронтали плоскости угла.
При использовании других способов преобразования нам пришлось бы дважды менять плоскости проекции либо дважды осуществлять перемещение (вращение), параллельное плоскости проекции, т.е. в обоих случаях потребовалось построение двух вспомогательных проекций,
89
Приведенные ниже примеры иллюстрируют использование способа вращения вокруг линии уровня для решения задачи определения действительной величины плоского угла.
Поворачиваем плоскость (а b)- вокруг ее горизонтали h в новое положение, параллельное горизонтальной плоскости. Точки А (А э а) и В (Вэ b) принадлежат оси вращения h (A, B)h, поэтому при вращении плоскости а вокруг оси h они не изменяют своего положения.
Следовательно, для определения нового положения плоскости 1 Н достаточно осуществить поворот только одной точки К. Для этого проводим через К' прямую, перпендикулярную h ( с этой прямой будет совпадать горизонтальная проекция окружности, по которой перемещается точка при ее вращении вокруг горизонтали). Далее определяем положение центра вращения 0 и величину радиуса вращения R для точки К. Положение точки К1 совместно с А и В определяют новые проекции a'1 и b1 (прямых а и b),
90
задающих плоскость 1 Н. Поэтому А К' В' равен искомому углу °
Пример 2, Определить величину углов треугольника АВС. Повернем плоскость треугольника АВС вокруг фронтали и этого треугольника в положение, параллельное плоскости V. Через вершину А треугольника АВС проводим фронталь u(uu'). Точки А и D, как принадлежащие оси вращения, не изменяет своего положения в процессе преобразования. Поэтому, как и в предыдущем примере, достаточно повернуть только одну точку.
На рис 7.3 в качестве такой точки взята вершина В треугольника АВС. Вершина треугольника С при вращении вокруг фронтали будет перемещаться по дуге окружности, плоскость которой перпендикулярна оси вращения ; поэтому фронтальная проекция этой окружности перпендикулярна и новое положение точки С1 определяется в точке пересечения этого перпендикуляра с новым положением (B1 D). После такого поворота плоскость треугольника переведена в положение параллельное фронтальной плоскости V.
Следовательно, на основании свойства о проецировании плоской фигуры, параллельной плоскости проекции ( изложено в п.7) углы при вершинах А"В1 и C'1 проецируются в натуральную величину.
Рис.7.3.
Пример: Через точку А провести прямую m, перпендикулярную горизонтали h ( рис 7.4 ).
Так одна из сторон h прямого угла, параллельна плоскости H, то на эту плоскость спроецируется без искажения. Поэтому через А проводим горизонтальную проекцию mh'. Отмечаем точку M= m h. Затем находим М(M"h ), Точки М11 и А определяют m.
Если вместо горизонтали будет задана фронталь и, то геометрические построения по проведению прямой mlu аналогичны только что рассмотренному случаю, с той лишь разницей, что построение неискаженной проекции прямого угла следует начинать с фронтальной проекции.
Если в плоскости взять не произвольные пересекающиеся прямые, а горизонталь и фронталь, то появляется возможность и в этом случае воспользоваться известной теоремой о проецировании прямого угла,
Пример 1. Восстановить в вершине А перпендикуляр AD к плоскости треугольника АВС (рис 7.5 ).
92
Рис.7.5. Рис.7.6
Для того, чтобы определить направление проекций перпендикуляра, проводим проекции горизонтали h и фронтали плоскости треугольника АВС. Затем в точке А восставляем перпендикуляр к h, a в А' перпендикуляр к ,
Пример 2. Из точки А опустить перпендикуляр АВ на плоскость заданную следами (рис 7.6 ).
Для решения этой задачи достаточно из А провести горизонтальную проекцию AВ, а из А - ее фронтальную проекцию A" Вv.
Поэтому построение плоскости , перпендикулярной к плоскости , можно осуществить двумя путями;
1. Проводим прямую m, перпендикулярную к плоскости (или ), затем прямую m заключаем в плоскость (или ).
93
2. Проводим прямую n, принадлежащую или параллельную плоскости (или ), затем строим плоскость (или), перпендикулярно к прямой n.
Пример 1. Чрез данную прямую а провести плоскость , перпендикулярную к плоскости , заданной параллельными прямыми 1 и f (рис.7.7.).
Рис 7.7
2. Из проекции произвольной точки Аеа проводим проекции перпендикуляра m'h' и m. Плоскость , т.к m
Пример 2.Через данную точку А провести горизонтально проецирующую плоскость , перпендикулярную к плоскости , заданной следами (рис.7.8)
Искомая плоскость рдолжна проходить перпендикулярно к прямой, принадлежащей плоскости В связи с тем, что плоскость должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней , должна быть параллельна плоскости H, т.е. являться горизонталью плоскости а или (что тоже самое) горизонтальным следом этой плоскости - н. Поэтому через горизонтальную проекцию точки А проводим горизонтальный след нн, фронтальный след vоси X.
7.3. Определение действительной величины угля между прямой и плоскостью. Между двумя плоскостями
Пространственная геометрическая модель, иллюстрирующая это определение, показана на рис 7.9 .
План решения задачи может быть, записан:
1 .Из произвольной точки А опускаем перпендикуляр на плоскость;
2. Определяем точку встречи этого перпендикуляра с плоскостью (точка А ортогональная проекция точки А на плоскость );
3.Находим точку пересечения прямой с плоскостью а (точка А- след прямой а на плоскости );
4.Проводим (А°А)- проекдию прямой а на плоскость ;
5.Определяем действительную величину ААА,т.е.0. Решение этой задачи может быть значительно упрощено, если определять не 0между прямой и плоскостью, а дополнительный до 90° ° В этом случае отпадает необходимость в определении точки А и
проекции аЗная величину у0 , вычисляем— 0=90-0.
Мерой угла между двумя плоскостями служит линейный угол, образованный двумя прямыми — сечениями граней этого угла плоскостью, перпендикулярной к их ребру.
Дня построения линейного угла, являющегося мерой двухгранного угла, необходимо выполнить следующие графические построения, показанные на рис 7.10 в определенной последовательности,
1. Определяем прямую n - линию пересечения данных плоскостей и (п= );
2. Проводим плоскость n (эта плоскость будет перпендикулярна также и к плоскостям и ;
3. Определяем прямые a= и b= ;
4. Находим действительную величину ° между прямыми а и b
. 0- искомый угол
96
7.4.Паралельность прямых, прямой и плоскости.
Если в пространстве прямые параллельны, то их одноименные
аbа b; а b; а b
Причем, если в пространстве прямые а , b занимают общее положение относительно плоскостей проекций, то для выяснения по эпюру вопроса о параллельности прямых достаточно убедиться, будут ли параллельны между собой их одноименные проекции только на двух плоскостях.
Параллельность проекции на третьей плоскости в этом случае автоматы чески удовлетворяется.
Если прямые параллельны какой- либо плоскости (хотя бы плоскости W), то условие параллельности на третьей плоскости может не выполняться, В этом случае, для выяснения вопроса будут ли прямые параллельны в пространстве, условие параллельности их одноименных горизонтальных и фронтальных проекций будет необходимым, но недостаточным. Для получения ответа следует убедиться в параллельности их профильных проекций.
На рис 7.11 показаны два возможных варианта взаимного расположения прямых АВ и CD.
m,если mn (n)
Пример: Через заданную точку А провести плоскость , параллельную данной прямой f ( рис 7.12).
Решение: 1. Через проекции точки А' и А' проводим проекции прямой а (а; а ), соответственно параллельные одноименным проекциям fи f;
2
Рис.7.13.
. Через проекции точки А(А; А) в произвольном направлении проводим проекции прямой b( b1; b"),
Плоскость проходит через точку А и параллельна прямой f, так как плоскость (а и аf).
Рис.7.12
Пример: Провести через точку А плоскость , параллельную данной плоскости , заданной двумя параллельными прямыми а и b (рис 7.13).
На рис.7.13 плоскость задана пересекающимися прямыми m n (m ab; nl)
Для установления зависимости между действительной величиной отрезка прямой и его проекциями рассмотрим рис 7.14
В прямоугольной трапеции ABB'А' (углы при вершинах А и В' — прямые) боковыми стор ими являются действительная величина отрезка [АВ] и его горизонтальная проекция [А В ], а основаниями [АА] и [ВВ ] по величине равные удалению концов отрезка А и В от горизонтальной плоскости Н.
АА=Z (. )А;ВВ=Z( . )В
Через точку А, в плоскости трапеции, проводим АВ1АВ, получим прямоугольный треугольник ABB1, у которого катет АВ1[АВ']. Поэтому геометрическая зависимость между действительной величиной отрезка и его горизонтальной проекцией может быть установлена с помощью прямоугольного треугольника, один из катетов которого равен горизонтальной проекции А В, а другой - разности аппликат котлов отрезка BB- АА Гипотенуза этого треугольника /АВ/ равна действительной величине.
Зависимость между действительной величиной отрезка и его фронтальной проекцией также видна на чертеже.
Для графического определения на эпюре Монжа действительной величины отрезка достаточно построить прямоугольный треугольник, взяв за один его катет горизонтальную^ ( фронтальную, профильную) проекцию отрезка, а за другой катет разность удаления концов отрезка от горизонтальной ( или соответственно фронтальной, профильной) плоскости проекции.
На (рис 7.15) показано определение действительной величины АВ путем построения треугольника АВВо. На этом же чертеже приведен второй вариант решения задачи: построение треугольника А'"В "Ао на базе фронтальной проекции отрезка.
100
С помощью прямоугольного треугольника можно решать задачу по построению на эпюре проекции отрезка на перед заданной
Из чертежа видно (рис.7.16), что определение расстояния от точки до прямой достигается минимальным количеством геометрических построений;
(m, m) - фронталь: А"М m Находим горизонтальную проекцию точки М - M', Методом прямоугольного треугольника определяем натуральную
величину искомого расстояния AM,
На прямой n (рис.7.17) отмечаем произвольную точку N. Вращаем прямые тип вокруг оси i H(iN) до положения параллельного фронтальной плоскости проекций (n1n1) и (m1m1). Из точки N'' опускаем перпендикуляр NM на прямую m1. Определяем действительную величину [MN].
Пример1_0пределить расстояние от точки А до фронтально проецирующей плоскости (рис 7.18)
Через А проводим горизонтальную проекцию перпендикуляра mн через А - его фронтальную проекцию mv. Отмечаем точку M=mv. Так как [АМ]V, то [А''М''] =AM = d
Рис.7.18.
1 .Переводим плоскость треугольника АВС во фронтально- проецирующее положение. Для этого переходим от системы
2.Проецируем треугольник АВС на новую фронтальную плоскость V1 (плоскость треугольника АВС спроецируется в [С1В1];
3.Проецируем на ту же плоскость К K1;
4.Через точку К i проводим (К1M1) [С1 В1]. Искомое расстояние d=К1М1
Исходя из определения, алгоритм решения задачи по нахождению расстояния между плоскостями и может быть выполнен:
1. Взять в плоскости произвольную точку А (А);
2. Из точки А опустить перпендикуляр m на плоскость (mА); m;
3. Найти точку М пересечения перпендикуляра m с плоскостью (M=m);
4. Определить действительную величину [AM]. ( d-=AM), На практике целесообразно, прежде всего перевести плоскость в проецирующее положение. Этим упрощается решение задачи. Пример: Определить расстояние между плоскостями а и р (рис.7.20).
Решение: Переходим от системы Х( V/H) —>X1( V1/H). По отношению к новой плоскости V1 плоскости и занимают проецирующее положение, поэтому расстояние d между их фронтальными следами и является искомым.
Рис.7.20.
103
Курс лекций предназначен для студентов технологических специальностей дневной и заочной форм обучения
24 09 2014
8 стр.
Допущено Научно-методическим советом по начертательной геометрии инженерной и компьютерной графике Министерства образования и науки РФ в качестве учебного пособия для бакалавров на
18 12 2014
1 стр.
Работа выполнена в Чувашском государственном педагогическом университете имени И. Я. Яковлева
16 12 2014
1 стр.
Л. С. Атанасяна, В. Ф. Бутузова, С. Б. Кадомцева и др. / Программы общеобразовательных учреждений. Геометрия. 10-11 классы. Москва. Просвещение
13 10 2014
1 стр.
Требования к уровню подготовки студента, завершившего изучение дисциплины "Геометрия"
17 12 2014
1 стр.
17 12 2014
1 стр.
Рабочая программа дисциплины "Аналитическая геометрия" предназначена для студентов 1 курса
17 12 2014
1 стр.
Рабочая программа дисциплины "Дифференцируемые многообразия и риманова геометрия" предназначена для студентов 3 курса
10 10 2014
1 стр.